Annie Marsden
PCMI Undergraduate Program

Goal: Understand why the Fourier Transform gives an isomorphism between $\mathbb{C}[G]$ and $\operatorname{End}\left(V_{\rho_{1}}\right) \oplus \ldots \oplus$ $\operatorname{End}\left(V_{\rho_{k}}\right)$ where $\left\{\rho_{i}\right\}$ are the irreducible representations of G.

Assumed Knowledge: We assume the reader is familiar with beginning Representation Theory. The following theorem we will not prove, but we will use throughout the etude:

Theorem 0.1. Let G be a finite group. Let $\rho_{1}, \ldots, \rho_{k}$ be the irreducible representations of G and let $\chi_{1}, \ldots, \chi_{k}$ be their associated characters. Let $\mathcal{C}(G)=\left\{f: G \rightarrow \mathbb{C}\right.$ such that f is a class function, i.e. $\left.\forall g, h \in G, f\left(g h g^{-1}\right)=f(h)\right\}$. Define the following inner product on $\mathcal{C}(G)$:

$$
\text { Let } \phi, \psi \in \mathcal{C}(G), \text { then }\langle\phi, \psi\rangle=\frac{1}{|G|} \sum_{g \in G} \overline{\phi(g)} \psi(g)
$$

Then our theorem is that $\left\{\chi_{1}, \ldots, \chi_{k}\right\}$ form an orthonormal basis for $\mathcal{C}(G)$ with respect to this inner product. Remark 0.2. From this one can show that if V is a representation of $G, V=\oplus V_{i}^{\oplus n_{i}} \Longleftrightarrow \chi_{V}=\sum n_{i} \chi_{V_{i}}$

1. Introduction to Fourier Transformation at a Representation

Definition 1.1. Let G be a finite group, let $\mathbb{C}[G]=\{f: G \rightarrow \mathbb{C}\}$, and let $f \in \mathbb{C}[G]$ be any function. The fourier transform of f at the representation $\rho: G \rightarrow G L(V)$ is the matrix

$$
\widehat{f}(\rho)=\sum_{g \in G} f(g) \rho(g) \in \operatorname{End}(\mathrm{V})
$$

Note: Unlike $\rho(g)$, the fourier transform of $f=\sum_{g \in G} f(g) \rho(g)$ may not be invertible nor G-linear.
So f gives us a way of associating to every representation of $\mathrm{G} \rho$ some linear transformation in $\operatorname{End}\left(V_{\rho}\right)$. This association is called the Fourier Transform of f and symbolically is written as \widehat{f}

Example (from Diaconis) A group of people ranked where they would prefer to live given the choice between a city, the suburbs, or the country. A ranking of these three options can be seen as an element of S_{3}. The data is below:

σ	City	Suburbs	Country	Number
id	1	2	3	242
(23)	1	3	2	28
(12)	2	1	3	170
(132)	3	1	2	628
(123)	2	3	1	12
(13)	3	2	1	359

So $f: G \rightarrow \mathbb{C}$ is $f(i d)=242, f((23))=28$, and so on.
Exercise 1.2. Using the representation matrices for S_{3} given below write the Fourier Transform of f for each irreducible representation.

σ	id	(12)	(23)	(13)	(123)		
$\rho_{\text {triv }}(\sigma)$	1	1	1	1	1		
$\rho_{\text {sgn }}(\sigma)$	1	-1	-1	-1	1		
$\rho_{\text {stan }}(\sigma)$	$\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]$	$\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$	$\frac{1}{2}\left[\begin{array}{cc}1 & \sqrt{3} \\ \sqrt{3} & -1\end{array}\right]$	$\frac{1}{2}\left[\begin{array}{cc}1 & -\sqrt{3} \\ -\sqrt{3} & -1\end{array}\right]$	$\frac{1}{2}\left[\begin{array}{cc}-1 & -\sqrt{3} \\ \sqrt{3} & -1\end{array}\right]$		1
:---:							
2	\(\left[\begin{array}{cc}-1 \& \sqrt{3} 						

-\sqrt{3} \& -1\end{array}\right]\)

Answer: You should get that $\widehat{f}\left(\rho_{\text {triv }}\right)=1439, \widehat{f}\left(\rho_{\text {sgn }}\right)=325$, and $\widehat{f}\left(\rho_{\text {stan }}\right)=\left[\begin{array}{cc}-54.5 & 285 \sqrt{3} / 2 \\ -947 \sqrt{3} / 2 & -101.5\end{array}\right]$

2. Fourier Transformation as a Ring Homomorphism

Given a function f on a group G , instead of considering the fourier transform of f at every representation of G , let us just consider its transform on the irreducible representations of G . Let $\rho_{1}, \ldots, \rho_{k}$ be the irreducible representations of our finite group G and define

$$
F T: \mathbb{C}[G] \rightarrow \operatorname{End}\left(V_{\rho_{1}}\right) \oplus \ldots \oplus \operatorname{End}\left(V_{\rho_{k}}\right)
$$

where

$$
f \mapsto\left(\widehat{f}\left(\rho_{1}\right), \ldots, \widehat{f}\left(\rho_{k}\right)\right)
$$

Question 2.1. What kind of map is FT?
Exercise 2.2. First check to see that FT is a group homomorphism. So show that $F T\left(f_{1}+f_{2}\right)=F T\left(f_{1}\right)+$ $F T\left(f_{2}\right)$.

Next check to see that FT is a ring homomorphism. For this we need to understand both $\mathbb{C}[G]$ and $\operatorname{End}\left(V_{\rho_{1}}\right) \oplus \ldots \oplus \operatorname{End}\left(V_{\rho_{k}}\right)$ as rings. That is we need to understand how elements multiply. We will multiply elements in $\mathbb{C}[G]$ as follows:

Definition 2.3. Let $f_{1}, f_{2} \in \mathbb{C}[G]$ and define the convolution of f_{1} and f_{2} to be $f_{1} * f_{2}: G \rightarrow \mathbb{C}$ where $f_{1} * f_{2}(g)=\sum_{h \in G} f_{1}\left(g h^{-1}\right) f_{2}(h)$

Exercise 2.4. Show that for any representation $\rho, \widehat{f_{1} * f_{2}}(\rho)=\widehat{f}_{1}(\rho) \widehat{f}_{2}(\rho)$
Exercise 2.5. Use the previous exercise to show that $F T\left(f_{1} * f_{2}\right)=F T\left(f_{1}\right) F T\left(f_{2}\right)$. Note that if the following k-tuble of matrices $\left(A_{1}, \ldots A_{k}\right),\left(B_{1}, \ldots, B_{k}\right)$ are in $\operatorname{End}\left(V_{\rho_{1}}\right) \oplus \ldots \oplus \operatorname{End}\left(V_{\rho_{k}}\right)$ then $\left(A_{1}, \ldots A_{k}\right)\left(B_{1}, \ldots, B_{k}\right)=$ $\left(A_{1} B_{1}, \ldots, A_{k} B_{k}\right)$.

Conclude from the exercises above that FT is a ring homomorphism.

3. Inverse Fourier Transformation

In this section we aim to show that FT is a ring isomorphism. We will show this by explicitly constructing $F T^{-1}$. This means that for any k-tuple of matrices in $\operatorname{End}\left(V_{\rho_{1}}\right) \oplus \ldots \oplus \operatorname{End}\left(V_{\rho_{k}}\right)$ there is a unique function defined on G that will generate these transformations.

First we will look at the regular representation, $\mathbb{C}[G]=\{f: G \rightarrow \mathbb{C}\}$. We can think of this as the \mathbb{C}-span of the basis $\left\{e_{g_{1}}, \ldots, e_{g_{k}}\right\}$ where $e_{g_{i}}: G \rightarrow \mathbb{C}$ and $e_{g_{i}}\left(g_{j}\right)=\delta_{i j}$. So $f=\sum_{i=1}^{k} f\left(g_{i}\right) e_{g_{i}}$
G acts naturally on this vector space: For $h \in G, h \cdot e_{g}:=e_{h g}$. The regular representation captures this action in matrices. We define $\rho_{\text {Reg }}: G \rightarrow G L\left(V_{R e g}\right)$ where $\rho_{\text {Reg }}(h)$ is the matrix that takes each basis vector e_{g} to $e_{h g}$. Notice then that if $h g_{i}=g_{i}$ we will have a 1 in the $i^{t h}$ row and $i^{t h}$ column of the matrix $\rho(h)$. Since G is a group, this is only the case when $h=i d$. Thus we have the following:

$$
\chi_{\text {Reg }}(h)= \begin{cases}0, & \text { if } h \neq i d \\ 1, & \text { if } h=i d\end{cases}
$$

Now we will use this to see that any irreducible representation of G appears as a subrepresentation of the regular representation.

Exercise 3.1. Let V_{ρ} be an irreducible representation of G. Show that $\left\langle\chi_{V_{i}}, \chi_{V_{\text {Reg }}}\right\rangle=\operatorname{dim} V_{i}$
From Remark 0.2 it therefore follows that any irreducible representation V_{ρ} of G appears as a subrepresentation of the regular representation $\operatorname{dim} V_{\rho}$ times. Thus $V_{R e g}=\oplus V_{i}^{\operatorname{dim} V_{i}}$. Then notice that the matrix $\rho_{\text {Reg }}$ has a block diagonal form, where the blocks are the irreducible representations $\rho_{V_{i}}$. Each $\rho_{V_{i}}$ block appears $\operatorname{dim} V_{i}$ times.

Exercise 3.2. From the above discussion, express $\operatorname{Tr}\left(\widehat{f}\left(\rho_{\text {Reg }}\right)\right)$ as a sum of $\operatorname{Tr}\left(\widehat{f}\left(\rho_{V_{i}}\right)\right)$ where the $\rho_{V_{i}}$ s are the irreducible representations.

Answer: $\operatorname{Tr}\left(\widehat{f}\left(\rho_{\text {Reg }}\right)\right)=\operatorname{Tr}\left(\sum_{g \in G} f(g) \rho_{\text {Reg }}(g)\right)=\sum_{g \in G} \operatorname{Tr}\left(f(g) \rho_{\text {Reg }}(g)\right)=\sum_{g \in G} \sum_{i=1}^{k} \operatorname{Tr}\left(f(g) \operatorname{dim} V_{i} \rho_{V_{i}}(g)\right)=$
$\sum_{i=1}^{k} \operatorname{dim} V_{i} \operatorname{Tr}\left(\sum_{g \in G} f(g) \rho_{V_{i}}(g)\right)=\sum_{i=1}^{k} \operatorname{dim} V_{i} \operatorname{Tr}\left(\widehat{f}\left(\rho_{V_{i}}\right)\right)$
Exercise 3.3. Let $f \in \mathbb{C}[G]$, so $\widehat{f}\left(\rho_{R e g}\right)=\sum_{g \in G} f(g) \rho_{R e g}(g)$. Show that for a fixed $h \in G$,

$$
\operatorname{Tr}\left(\widehat{f}\left(\rho_{\text {Reg }}\right)\left(\rho_{\text {Reg }}(h)^{-1}\right)\right)=|G| f(h)
$$

Conclude that $f(h)=\frac{1}{|G|} \operatorname{Tr}\left(\widehat{f}\left(\rho_{\text {Reg }}\right) \rho_{\text {Reg }}(h)^{-1}\right)$
Exercise 3.4. Combine exercise 3.2 and 3.3 to show that for some $h \in G, f(h)=\frac{1}{|G|} \sum_{i=1}^{k} \operatorname{dim} V_{i} \operatorname{Tr}\left(\widehat{f}\left(\rho_{V_{i}}\right) \rho_{V_{i}}(h)^{-1}\right)$
Now we are able to construct the Fourier Inversion Theorem. Recall

$$
F T^{-1}: \operatorname{End}\left(V_{\rho_{1}}\right) \oplus \ldots \oplus \operatorname{End}\left(V_{\rho_{k}}\right) \rightarrow \mathbb{C}[G]
$$

From exercise 3.4 we see that for each $h \in G$ we can reconstruct $f(h)$ via:

$$
F T^{-1}\left(A_{1}, \ldots, A_{k}\right)=\frac{1}{|G|} \sum_{i=1}^{k} \operatorname{dim} V_{i} \operatorname{Tr}\left(A_{i} \rho_{V_{i}}(h)^{-1}\right)
$$

4. Fourier Transform on Finite Cyclic Groups

Now let's consider finite cyclic groups. Let $G=\mathbb{Z} / d \mathbb{Z}$
Note: Consider a representation of G, $\rho: G \rightarrow G L(V)$. We often write that since ρ is a homomorphism, $\rho(g h)=\rho(g) \rho(h)$. But this omits the symbol for the group operation. In the case of $G=\mathbb{Z} / d \mathbb{Z}$ we have that $\rho(g+h)=\rho(g) \rho(h)$. Be aware of this throughout the following example.

First we need to show that an abelian group can only have one-dimensional irreducible representations. Recall the following:

Lemma 4.1. (Shur's) If V and W are irreducible representations of G and $\phi: V \rightarrow W$ is a G-module homomorphism, then

1) Either ϕ is an isomorphism, or $\phi=0$
2) If $V=W$, then $\phi=\lambda I$ for some $\lambda \in \mathbb{C}$, I the identity.

Exercise 4.2. Fix some $g \in G$. Show that $\rho(g): V \rightarrow V$ is a G-module homomorphism for every Grepresentation ρ (really just show that it is G-linear) if and only if $g \in Z(G)=\{h \in G \mid h k=k h \forall k \in G\}$

Answer: Fix some $g \in G$ and let ρ be the regular representation. Suppose that $\rho(g): V \rightarrow V$ is G-linear. Then $\forall h \in G, \rho(g)(\rho(h)(v))=\rho(h)(\rho(g)(v))$ Since ρ is a homomorphism, $\rho(g) \rho(h)=\rho(g h)$. Thus

$$
\begin{aligned}
& \rho(g h(v))=\rho(h g)(v) \\
& \quad \rho(g h) \rho(h g)^{-1}=I \\
& \quad \rho\left(g h g^{-1} h^{-1}\right)=I
\end{aligned}
$$

Since ρ is the regular representation, from our discussion at the beginning of section three, we have that $g h g^{-1} h^{-1}=i d$. Thus $g \in Z(G)$
Now suppose that $g \in Z(G)$, then for any representation we have that $\rho(g h)(v)=\rho(h g)(v)$ and since ρ is a homomorphism we get that $\rho(g)(\rho(h)(v))=\rho(h)(\rho(g)(v))$

Question 4.3. If G is abelian then what is $Z(G)$? What does this mean about $\rho(g): V \rightarrow V$ for any $g \in G$?
Question 4.4. Suppose $\rho: G \rightarrow G L(V)$ is an irreducible representation. Moreover, suppose G is abelian. Using what you know about $\rho(g): V \rightarrow V$ and part (2) of Schur's lemma then what can you conclude about the dimension of V ?

Answer: Since G is abelian, $\forall g \in G, \rho(g): V \rightarrow V$ is a G-module homomorphism. Then by (2) of Schur's lemma $\rho(g)$ is some scalar multiple of the identity matrix for any g. Thus any subspace of V is G-invariant. Since V is irreducible we conclude that $\operatorname{dim} V=1$.

Let's get back to our example of $G=\mathbb{Z} / d \mathbb{Z}$. Its irreducible represenations are one dimensional, i.e. $\forall k \in \mathbb{Z} / d \mathbb{Z}, \rho(k) \in \mathbb{C}$. Notice that $d k=i d$ so $\rho(k)^{d}=I$ and so $\rho(k)$ is a $d^{t h}$ root of unity. Thus $\rho(k) \in \mathbb{C}^{*}$

Exercise 4.5. Show that $\rho_{j}: G \rightarrow \mathbb{C}$, where $\rho_{j}(k)=e^{\frac{2 \pi i j k}{d}}$ is an irreducible representation for $j=1 \ldots d$
Do we have all of the irreducible representations? Recall that the characters of the irreducible representations for a basis for $\mathcal{C}(G)$, the class functions on G. Since G is abelian, how many conjugacy classes are there? Thus how many irreducible representations are there?

Consider our Fourier Transform map,

$$
F T: \mathbb{C}[G] \rightarrow \operatorname{End}\left(V_{\rho_{1}}\right) \oplus \ldots \oplus \operatorname{End}\left(V_{\rho_{d}}\right)
$$

where

$$
\left.f \rightarrow \widehat{((f)}\left(\rho_{1}\right), \ldots, \widehat{f}\left(\rho_{d}\right)\right)
$$

If $f \in \mathbb{C}[\mathbb{Z} / d \mathbb{Z}]$, then $f(k+n d)=f(k), \forall n \in \mathbb{N}$, so $\mathbb{C}[\mathbb{Z} / d \mathbb{Z}]$ contains the functions with period d. As for the domain we have that an irreducible representation is of the form $\rho_{j}: G \rightarrow \mathbb{C}^{*}$. Thus $\operatorname{End}\left(V_{\rho_{1}}\right)=$ $\operatorname{End}\left(\mathbb{C}^{*}\right)=\mathbb{C}^{*}$. Thus FT takes periodic functions to a d-tuple with elements on the unit circle. And with the inverse transform we know that a sequence of d values on the unit circle corresponds uniquely to a periodic function (with period d).
$F T: \mathbb{C}[\mathbb{Z} / d \mathbb{Z}] \rightarrow\left(\mathbb{C}^{*}\right)^{\oplus d}$
Exercise 4.6. Determine the fourier transform of f at ρ_{k}.
Answer: The fourier transform of f at ρ_{k} is given by:

$$
\widehat{f}\left(\rho_{j}\right)=\sum_{m=1}^{d} f(m) e^{\frac{2 \pi i m k}{d}}
$$

Exercise 4.7. Give a formula for the inverse transform $F T^{-1}$. If $\left(a_{1}, \ldots, a_{d}\right) \in\left(\mathbb{C}^{*}\right)^{\oplus d}$, then what is $f \in \mathbb{C}[\mathbb{Z} / d \mathbb{Z}]$

Answer: For $k \in \mathbb{Z} / d \mathbb{Z}$ we have that $f(k)=\frac{1}{d} \sum_{j=1}^{d} a_{j} e^{-\frac{2 \pi i j k}{d}}$

