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Goal: Understand why the Fourier Transform gives an isomorphism between C[G] and End(Vρ1)⊕ ...⊕
End(Vρk) where {ρi} are the irreducible representations of G.

Assumed Knowledge: We assume the reader is familiar with beginning Representation Theory. The
following theorem we will not prove, but we will use throughout the etude:

Theorem 0.1. Let G be a finite group. Let ρ1, ..., ρk be the irreducible representations of G and let χ1, ..., χk
be their associated characters. Let C(G) =

{
f : G→ C such that f is a class function, i.e.∀g, h ∈ G, f(ghg−1) = f(h)

}
.

Define the following inner product on C(G):

Let φ, ψ ∈ C(G), then 〈φ, ψ〉 = 1
|G|

∑
g∈G

φ(g)ψ(g)

Then our theorem is that {χ1, ..., χk} form an orthonormal basis for C(G) with respect to this inner product.

Remark 0.2. From this one can show that if V is a representation of G, V = ⊕V ⊕nii ⇐⇒ χV =
∑
niχVi

1. Introduction to Fourier Transformation at a Representation

Definition 1.1. Let G be a finite group, let C[G] = {f : G→ C}, and let f ∈ C[G] be any function. The
fourier transform of f at the representation ρ : G→ GL(V ) is the matrix

f̂(ρ) =
∑
g∈G

f(g)ρ(g) ∈ End(V)

.

Note: Unlike ρ(g), the fourier transform of f =
∑
g∈G

f(g)ρ(g) may not be invertible nor G-linear.

So f gives us a way of associating to every representation of G ρ some linear transformation in End(Vρ).

This association is called the Fourier Transform of f and symbolically is written as f̂

Example (from Diaconis) A group of people ranked where they would prefer to live given the choice
between a city, the suburbs, or the country. A ranking of these three options can be seen as an element of
S3. The data is below:

σ City Suburbs Country Number
id 1 2 3 242

(23) 1 3 2 28
(12) 2 1 3 170
(132) 3 1 2 628
(123) 2 3 1 12
(13) 3 2 1 359

So f : G→ C is f(id) = 242, f((23)) = 28, and so on.

Exercise 1.2. Using the representation matrices for S3 given below write the Fourier Transform of f for
each irreducible representation.

σ id (12) (23) (13) (123) (132)
ρtriv(σ) 1 1 1 1 1 1
ρsgn(σ) 1 -1 -1 -1 1 1
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Answer: You should get that f̂(ρtriv) = 1439, f̂(ρsgn) = 325, and f̂(ρstan) =

[
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2. Fourier Transformation as a Ring Homomorphism

Given a function f on a group G, instead of considering the fourier transform of f at every representation
of G, let us just consider its transform on the irreducible representations of G. Let ρ1, ..., ρk be the irreducible
representations of our finite group G and define

FT : C[G]→ End(Vρ1)⊕ ...⊕ End(Vρk)

where

f 7→ (f̂(ρ1), ..., f̂(ρk))

Question 2.1. What kind of map is FT?

Exercise 2.2. First check to see that FT is a group homomorphism. So show that FT (f1 +f2) = FT (f1) +
FT (f2).

Next check to see that FT is a ring homomorphism. For this we need to understand both C[G] and
End(Vρ1)⊕ ...⊕End(Vρk) as rings. That is we need to understand how elements multiply. We will multiply
elements in C[G] as follows:

Definition 2.3. Let f1, f2 ∈ C[G] and define the convolution of f1 and f2 to be f1 ∗ f2 : G → C where
f1 ∗ f2(g) =

∑
h∈G

f1(gh−1)f2(h)

Exercise 2.4. Show that for any representation ρ, f̂1 ∗ f2(ρ) = f̂1(ρ)f̂2(ρ)

Exercise 2.5. Use the previous exercise to show that FT (f1∗f2) = FT (f1)FT (f2). Note that if the following
k-tuble of matrices (A1, ...Ak), (B1, ..., Bk) are in End(Vρ1) ⊕ ... ⊕ End(Vρk) then (A1, ...Ak)(B1, ..., Bk) =
(A1B1, ..., AkBk).

Conclude from the exercises above that FT is a ring homomorphism.

3. Inverse Fourier Transformation

In this section we aim to show that FT is a ring isomorphism. We will show this by explicitly constructing
FT−1. This means that for any k-tuple of matrices in End(Vρ1)⊕ ...⊕End(Vρk) there is a unique function
defined on G that will generate these transformations.

First we will look at the regular representation, C[G] = {f : G→ C}. We can think of this as the

C-span of the basis {eg1 , ..., egk} where egi : G→ C and egi(gj) = δij . So f =
k∑
i=1

f(gi)egi

G acts naturally on this vector space: For h ∈ G, h · eg := ehg. The regular representation captures this
action in matrices. We define ρReg : G→ GL(VReg) where ρReg(h) is the matrix that takes each basis vector
eg to ehg. Notice then that if hgi = gi we will have a 1 in the ith row and ith column of the matrix ρ(h).
Since G is a group, this is only the case when h = id. Thus we have the following:

χReg(h) =

{
0, if h 6= id

1, if h = id

Now we will use this to see that any irreducible representation of G appears as a subrepresentation of the
regular representation.

Exercise 3.1. Let Vρ be an irreducible representation of G. Show that 〈χVi , χVReg 〉= dimVi

From Remark 0.2 it therefore follows that any irreducible representation Vρ of G appears as a subrepre-

sentation of the regular representation dimVρ times. Thus VReg = ⊕V dimVi
i . Then notice that the matrix

ρReg has a block diagonal form, where the blocks are the irreducible representations ρVi . Each ρVi block
appears dimVi times.

Exercise 3.2. From the above discussion, express Tr(f̂(ρReg)) as a sum of Tr(f̂(ρVi)) where the ρVis are
the irreducible representations.
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Answer: Tr(f̂(ρReg))= Tr(
∑
g∈G

f(g)ρReg(g)) =
∑
g∈G

Tr(f(g)ρReg(g)) =
∑
g∈G

k∑
i=1

Tr(f(g)dimViρVi(g)) =

k∑
i=1

dimViTr(
∑
g∈G

f(g)ρVi(g)) =
k∑
i=1

dimViTr(f̂(ρVi)) �

Exercise 3.3. Let f ∈ C[G], so f̂(ρReg) =
∑
g∈G

f(g)ρReg(g) . Show that for a fixed h ∈ G,

Tr(f̂(ρReg)(ρReg(h)−1)) = |G|f(h)

Conclude that f(h) = 1
|G|Tr(f̂(ρReg)ρReg(h)−1)

Exercise 3.4. Combine exercise 3.2 and 3.3 to show that for some h ∈ G, f(h) = 1
|G|

k∑
i=1

dimViTr(f̂(ρVi)ρVi(h)−1)

Now we are able to construct the Fourier Inversion Theorem. Recall

FT−1 : End(Vρ1)⊕ ...⊕ End(Vρk)→ C[G]

From exercise 3.4 we see that for each h ∈ G we can reconstruct f(h) via:

FT−1(A1, ..., Ak) = 1
|G|

k∑
i=1

dimViTr(AiρVi(h)−1)

4. Fourier Transform on Finite Cyclic Groups

Now let’s consider finite cyclic groups. Let G = Z/dZ
Note: Consider a representation of G, ρ : G → GL(V ). We often write that since ρ is a homomorphism,
ρ(gh) = ρ(g)ρ(h). But this omits the symbol for the group operation. In the case of G = Z/dZ we have that
ρ(g + h) = ρ(g)ρ(h). Be aware of this throughout the following example.

First we need to show that an abelian group can only have one-dimensional irreducible representations.
Recall the following:

Lemma 4.1. (Shur’s) If V and W are irreducible representations of G and φ : V → W is a G-module
homomorphism, then

1) Either φ is an isomorphism, or φ = 0
2) If V=W, then φ = λI for some λ ∈ C, I the identity.

Exercise 4.2. Fix some g ∈ G. Show that ρ(g) : V → V is a G-module homomorphism for every G-
representation ρ (really just show that it is G-linear) if and only if g ∈ Z(G) = {h ∈ G|hk = kh∀k ∈ G}

Answer: Fix some g ∈ G and let ρ be the regular representation. Suppose that ρ(g) : V → V is G-linear.
Then ∀h ∈ G, ρ(g)(ρ(h)(v)) = ρ(h)(ρ(g)(v)) Since ρ is a homomorphism, ρ(g)ρ(h) = ρ(gh). Thus

ρ(gh(v)) = ρ(hg)(v)
ρ(gh)ρ(hg)−1 = I

ρ(ghg−1h−1) = I

Since ρ is the regular representation, from our discussion at the beginning of section three, we have that
ghg−1h−1 = id. Thus g ∈ Z(G)
Now suppose that g ∈ Z(G), then for any representation we have that ρ(gh)(v) = ρ(hg)(v) and since ρ is a
homomorphism we get that ρ(g)(ρ(h)(v)) = ρ(h)(ρ(g)(v))

Question 4.3. If G is abelian then what is Z(G)? What does this mean about ρ(g) : V → V for any g ∈ G?

Question 4.4. Suppose ρ : G → GL(V ) is an irreducible representation. Moreover, suppose G is abelian.
Using what you know about ρ(g) : V → V and part (2) of Schur’s lemma then what can you conclude about
the dimension of V?
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Answer: Since G is abelian, ∀g ∈ G, ρ(g) : V → V is a G-module homomorphism. Then by (2) of
Schur’s lemma ρ(g) is some scalar multiple of the identity matrix for any g. Thus any subspace of V is
G-invariant. Since V is irreducible we conclude that dimV = 1.

Let’s get back to our example of G = Z/dZ. Its irreducible represenations are one dimensional, i.e.
∀k ∈ Z/dZ, ρ(k) ∈ C. Notice that dk = id so ρ(k)d = I and so ρ(k) is a dth root of unity. Thus ρ(k) ∈ C∗

Exercise 4.5. Show that ρj : G→ C, where ρj(k) = e
2πijk
d is an irreducible representation for j = 1...d

Do we have all of the irreducible representations? Recall that the characters of the irreducible represen-
tations for a basis for C(G), the class functions on G. Since G is abelian, how many conjugacy classes are
there? Thus how many irreducible representations are there?

Consider our Fourier Transform map,

FT : C[G]→ End(Vρ1)⊕ ...⊕ End(Vρd)

where

f → (̂(f)(ρ1), ..., f̂(ρd))

If f ∈ C[Z/dZ], then f(k + nd) = f(k), ∀n ∈ N, so C[Z/dZ] contains the functions with period d. As
for the domain we have that an irreducible representation is of the form ρj : G → C∗. Thus End(Vρ1) =
End(C∗) = C∗. Thus FT takes periodic functions to a d-tuple with elements on the unit circle. And with the
inverse transform we know that a sequence of d values on the unit circle corresponds uniquely to a periodic
function (with period d).
FT : C[Z/dZ]→ (C∗)⊕d

Exercise 4.6. Determine the fourier transform of f at ρk.

Answer: The fourier transform of f at ρk is given by:

f̂(ρj) =
d∑

m=1
f(m)e

2πimk
d

Exercise 4.7. Give a formula for the inverse transform FT−1. If (a1, ..., ad) ∈ (C∗)⊕d, then what is
f ∈ C[Z/dZ]

Answer: For k ∈ Z/dZ we have that f(k) = 1
d

d∑
j=1

aje
− 2πijk

d


