Annie Marsden
PCMI Undergraduate Program

Goal: Understand why the Fourier Transform gives an isomorphism between C[G] and End(V,,) & ... &
End(V,,) where {p;} are the irreducible representations of G.

Assumed Knowledge: We assume the reader is familiar with beginning Representation Theory. The
following theorem we will not prove, but we will use throughout the etude:

Theorem 0.1. Let G be a finite group. Let p1, ..., pi be the irreducible representations of G and let x1, ..., Xk
be their associated characters. Let C(G) = {f : G — C such that f is a class function, i.eNg,h € G, f(ghg™") = f(h)}.
Define the following inner product on C(G):

Let 6,4 € C(G), then (¢,9) = & ;G P(9)¥(9)

Then our theorem is that {x1, ..., Xx} form an orthonormal basis for C(G) with respect to this inner product.

Remark 0.2. From this one can show that if V is a representation of G, V = @V®" <= xy =3 nixv,

1. INTRODUCTION TO FOURIER TRANSFORMATION AT A REPRESENTATION

Definition 1.1. Let G be a finite group, let C[G] = {f : G — C}, and let f € C[G] be any function. The
fourier transform of f at the representation p : G — GL(V) is the matrix

o) = %:Gf(g)f)(g) € End(V)

Note: Unlike p(g), the fourier transform of f = > f(g)p(g) may not be invertible nor G-linear.
geG
So f gives us a way of associating to every representation of G p some linear transformation in End(V,).

This association is called the Fourier Transform of f and symbolically is written as f

Example (from Diaconis) A group of people ranked where they would prefer to live given the choice
between a city, the suburbs, or the country. A ranking of these three options can be seen as an element of
S3. The data is below:

o City Suburbs Country Number

d 1 2 3 242
(23) 1 3 2 28
(12) 2 1 3 170

(132) 3 1 2 628
(123) 2 3 1 12
(13) 3 2 1 359

So f: G — Cis f(id) = 242, f((23)) = 28, and so on.

Exercise 1.2. Using the representation matrices for S3 given below write the Fourier Transform of f for
each irreducible representation.

o id (12) (23) (13) (123) (132)
Dirin(0) 1 1 1 1 1
Psgn(0) 1 -1 -1 -1 1 1
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Answer: You should get that f(psriv) = 1439, f(psgn) = 325, and f(pstan) = _047v3/2 —1015
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2. FOURIER TRANSFORMATION AS A RING HOMOMORPHISM

Given a function f on a group G, instead of considering the fourier transform of f at every representation
of G, let us just consider its transform on the irreducible representations of G. Let p1, ..., px be the irreducible
representations of our finite group G' and define

FT : C[G] = End(V,,) & ... ® End(V,,)

where

~ o~

fe= (F(pr), ooy fpr))
Question 2.1. What kind of map is FT?

Exercise 2.2. First check to see that FT is a group homomorphism. So show that FT(f1 + f2) = FT(f1)+
FT(f2).

Next check to see that FT is a ring homomorphism. For this we need to understand both C[G] and
End(V,,)®...® End(V,,) as rings. That is we need to understand how elements multiply. We will multiply
elements in C[G] as follows:

Definition 2.3. Let fi, fo € C[G] and define the convolution of f; and fs to be f1 * fo : G — C where
fix fa(g) = hZG fi(gh™") f2(R)
€

Exercise 2.4. Show that for any representation p, m(p) = f\l(p)fg(p)

Exercise 2.5. Use the previous exercise to show that FT(f1xf2) = FT(f1)FT(f2). Note that if the following
k-tuble of matrices (A1,...Ay), (Bu,..., By) are in End(V,,) @ ... ® End(V,,) then (Ay,...Ax)(B1, ..., By) =
(A1 By, ..., ApBy,).

Conclude from the exercises above that FT is a ring homomorphism.

3. INVERSE FOURIER TRANSFORMATION

In this section we aim to show that FT is a ring isomorphism. We will show this by explicitly constructing
FT~!. This means that for any k-tuple of matrices in End(V,,) @ ... ® End(V,,) there is a unique function
defined on G that will generate these transformations.

First we will look at the regular representation, C[G] = {f : G — C}. We can think of this as the
k
C-span of the basis {eg, ,...,eq, } where ey, : G — C and e, (g;) = d;5. So f = > f(9:)eq,
i=1
G acts naturally on this vector space: For h € G, h - ey := epy. The regular representation captures this
action in matrices. We define prey : G — GL(Vgey) where preg(h) is the matrix that takes each basis vector
eg to epg. Notice then that if hg; = g; we will have a 1 in the it" row and i*" column of the matrix p(h).
Since G is a group, this is only the case when h = id. Thus we have the following:

0, ifh#id
XR"‘-"(h){1 if b= id

Now we will use this to see that any irreducible representation of G appears as a subrepresentation of the
regular representation.

Exercise 3.1. Let V, be an irreducible representation of G. Show that (xv;, xvy.,)= dimV;

From Remark 0.2 it therefore follows that any irreducible representation V, of G appears as a subrepre-
sentation of the regular representation dimV), times. Thus Vgey = EBVl-dimVi. Then notice that the matrix
PReg has a block diagonal form, where the blocks are the irreducible representations py,. Each py, block
appears dimV; times.

~ ~

Exercise 3.2. From the above discussion, express Tr(f(preg)) as a sum of Tr(f(pv,)) where the py,s are
the irreducible representations.



o~

Answer: Tr(f(preg))= Tr( X f(9)PReg(9)) = 22 Tr(f(9)preg(9)) = X0 iTT(f(g)dimem(g)) =

9eG g€eq geGi=1
k —~
ZdszTT( ;Gf( 9)pv.(9)) = ;dimViTT( (pvi)) O

Exercise 3.3. Let f € C[G], so f(pReg) = Y f(9)pRreg(g) . Show that for a fixed h € G,
9€G

Te(f (ﬂReg)(pReg( )7) = |G f(h)
Conclude that f(h) = |%lTT(A(pReg)pReg( )1

k
Exercise 3.4. Combine exercise 3.2 and 3.3 to show that for some h € G, f(h) = % Z dimViTr(f(pv.)pv,(h) ™)

Now we are able to construct the Fourier Inversion Theorem. Recall
FT=': End(V,,)®...® End(V,,) — C[G]

From exercise 3.4 we see that for each h € G we can reconstruct f(h) via:

YAy, Ap) = % ; dimV;Tr(A;py, (h)~1)

4. FOURIER TRANSFORM ON FINITE CycLic GROUPS

Now let’s consider finite cyclic groups. Let G = Z/dZ
Note: Consider a representation of G, p : G — GL(V). We often write that since p is a homomorphism,
p(gh) = p(g)p(h). But this omits the symbol for the group operation. In the case of G = Z/dZ we have that
p(g+h) = p(g)p(h). Be aware of this throughout the following example.

First we need to show that an abelian group can only have one-dimensional irreducible representations.
Recall the following:

Lemma 4.1. (Shur’s) If V and W are irreducible representations of G and ¢ : V. — W is a G-module
homomorphism, then
1) Either ¢ is an isomorphism, or ¢ =0
2) If V=W, then ¢ = M for some \ € C, I the identity.

Exercise 4.2. Fix some g € G. Show that p(g) : V — V is a G-module homomorphism for every G-
representation p (really just show that it is G-linear) if and only if g € Z(G) = {h € G|hk = khVk € G}

Answer: Fix some g € G and let p be the regular representation. Suppose that p(g) : V' — V is G-linear.
Then Vh € G, p(g)(p(h)(v)) = p(h)(p(g)(v)) Since p is a homomorphism, p(g)p(h) = p(gh). Thus

p(gh(v)) = p(hg)(v)
plgh)p(hg)~" =1
plghg™*h= 1) =1
Since p is the regular representation, from our discussion at the beginning of section three, we have that
ghg=*h~! =id. Thus g € Z(G)
Now suppose that g € Z(G), then for any representation we have that p(gh)(v) = p(hg)(v) and since p is a
homomorphism we get that p(g)(p(h)(v)) = p(h)(p(g)(v))

Question 4.3. If G is abelian then what is Z(G)? What does this mean about p(g) : V — V for any g € G?

Question 4.4. Suppose p : G — GL(V) is an irreducible representation. Moreover, suppose G is abelian.
Using what you know about p(g) : V' — V and part (2) of Schur’s lemma then what can you conclude about
the dimension of V?



Answer: Since G is abelian, Vg € G, p(g) : V — V is a G-module homomorphism. Then by (2) of
Schur’s lemma p(g) is some scalar multiple of the identity matrix for any g. Thus any subspace of V is
G-invariant. Since V is irreducible we conclude that dimV = 1.

Let’s get back to our example of G = Z/dZ. Its irreducible represenations are one dimensional, i.e.
Vk € Z/dZ, p(k) € C. Notice that dk = id so p(k)? = I and so p(k) is a d'" root of unity. Thus p(k) € C*

Exercise 4.5. Show that p; : G — C, where p;(k) = e is an irreducible representation for j = 1...d

Do we have all of the irreducible representations? Recall that the characters of the irreducible represen-
tations for a basis for C(G), the class functions on G. Since G is abelian, how many conjugacy classes are
there? Thus how many irreducible representations are there?

Consider our Fourier Transform map,
FT : C[G] = End(V,,) & ... ® End(V,,)
where

~ ~

f = ((£)p1); s fpa))

If f € C[Z/dZ], then f(k+ nd) = f(k), Yn € N, so C[Z/dZ] contains the functions with period d. As
for the domain we have that an irreducible representation is of the form p; : G — C*. Thus End(V,,) =
End(C*) = C*. Thus FT takes periodic functions to a d-tuple with elements on the unit circle. And with the
inverse transform we know that a sequence of d values on the unit circle corresponds uniquely to a periodic
function (with period d).

FT :C[Z/dZ] — (C*)®d

Exercise 4.6. Determine the fourier transform of f at py.

Answer: The fourier transform of f at py is given by:

2wimk

flo) = 5 sm)e=

Exercise 4.7. Give a formula for the inverse transform FT7'. If (ay,...,aq) € (C*)®? then what is

feClz/dZ)

d g
Answer: For k € Z/dZ we have that f(k) = 3 aje_y
=1
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