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ABSTRACT: Traditional network diagrams connect nodes with simple lines.
When one uses them to help interpret complex potential surfaces, that
information, the links between minima, is not sufficient to give insights into
the dynamics that can occur on those surfaces. Here, we introduce a simple
means to introduce more information into the network diagram. Specifically,
since each node represents a local potential minimum, the line that links two
nodes can be considered a representation of the minimum-energy path between
those minima. Then one can add a point along the link, for example, the
midpoint, so the link then consists of two segments, one from each minimum to
the saddle point of the lowest-energy path connecting them. That makes it
possible to represent the energy, at least in terms of energy bands, by coloring each segment from minimum to saddle. We here
show examples of such color-coded network diagrams for two illustrative atomic clusters.

I. INTRODUCTION

One of the frequent uses of network diagrams is its application
to complex potential surfaces, the representations of the energy
of an array of atoms as a function of the geometric arrangement
of those atoms. The nodes of such a diagram represent the local
energy minima and the links between nodes denote the link
between adjacent minima, that is, minima separated by a single
energy saddle. There may, of course, be additional single-saddle
pathways between the same minima. However, the network
diagram implicitly indicates the lowest-energy pathway. Such
diagrams are useful for providing information about how many-
atom systems can rearrange and sometimes relax to their lowest
minima. However, there is no information in a traditional
network diagram concerning the kinetics of rearrangements,
isomerizations, or the time scales of passage among the minima.
Here we introduce a way to include the key information that
governs those kinetic processes, specifically, information
regarding the energies of the minima and the energy barriers
that separate them. Specifically, we illustrate how to color the
links between minima to reveal the approximate heights of the
energy barriers between local minima, by coloring each link in
two segments. Each segment is a qualitative representation of
the path from minimum to saddle. That way, the color of each
link can indicate the energy difference between a minimum
and a specific saddle. Thus, for example, two minima of equal
energies connected through a saddle have a link of a single
color in the enriched network diagram; minima of different
energies and, hence, different minimum-to-saddle energy
barriers have a bicolor link in the diagram.
There are more ways to increase the information in network

diagrams for potential surfaces. The easiest is probably simply
to add an index number to indicate the order in which the local
minima occur, starting with the global minimum as “1” and
continuing upward in energy from there. Or the energy of each
node can be indicated to an approximate extent either by color
or by the diameter of a circle representing each node.

This approach shares some characteristics with “disconnec-
tion diagrams”,1,2 also called “lid diagrams”,3 insofar as these
diagrams reveal the energies of minima and the saddles that
link them. Disconnection diagrams, however, have somewhat
different information about the geometric structure of an
energy landscape than does a network diagram. While network
diagrams implicitly indicate minimum energy barriers between
neighboring minima, they do not distinguish specific pathways
between minima when multiple pathways exist. Network
diagrams traditionally show pathways linking adjacent minima
but do not indicate anything about the barrier heights of those
links. Here we are showing a way to enrich the information in a
network diagram to exhibit essentially all the content that one
would find in a combination of a network and a disconnection
diagram.
We show a few examples, none exhaustive of all the minima

on a potential surface, but enough to display the method and
the content of these enriched illustrations. In particular, we
discuss the kinds of insights that this form of diagram reveals
uniquely. We present this to open an approach to enriching
a visualization device; the final discussion indicates natural
directions to explore from here.

II. 13-ATOM LENNARD-JONES CLUSTER

The cluster of 13 rare gas atoms, for example, Ar13, and its
frequent model of 13 atoms bound by pairwise Lennard-Jones
potentials, has long been recognized as a paragon model for
systems exhibiting the stability associated with closed-shell
structures. The rare gas clusters and their “L-J” models exhibit
icosahedral geometries in their lowest-energy forms, with a few
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exceptions, such as the 38- and 75-atom systems.4 Con-
sequently, the clusters with closed-shell icosahedra show
exceptional stability, and the binding energy per atom is higher
for those closed-shell structures, with 13, 55, ..., atoms.
Here, we show in Figure 1 our first example, an “enriched”

network diagram for the seven lowest-energy minima of the
13-atom cluster with Lennard-Jones pairwise interactions, LJ13.
The energies of the minima are indicated by the right-hand
color scale, with the global minimum, #1, at the top, in darkest
blue, minimum 2 at left in almost as dark blue, minimum 3 at
the right, also blue, and minima 4 through 7 below. The links
are also color-coded, but all in two segments. Each segment
represents the path from a minimum to the saddle along a
specific pathway to another minimum. The color scale at the
left indicates the energy separation between the minimum and
the saddle to which it connects. Hence, a blue link indicates
that the minimum and saddle it connects have very similar
energies, so that energy barrier is easily reached. An orange or
red link indicates that the saddle has an energy much higher
than the minimum. The saddle positions are arbitrarily placed
at the midpoints of the links; it would be possible to include
more information by placing the saddle positions to indicate
relative distances from the minima, for example, or, as one
reviewer suggests, at a position indicating the relative rates
of forward and backward passages at a specific temperature.
Alternatively, as another reviewer suggests, the nodes could be
located at positions indicating the relative distances between
nodes and saddles, as measured by principal coordinates.
In some cases, there is only one direct pathway between

two minima, as in the case of the link between minimum 1 and
minimum 6, while minima 1 and 2 are linked by three separate
pathways, all fairly symmetrical, as the similarity of colors
on both sides of each link indicates. Minima 1 through 4 are
fairly strongly interconnected, but minima 6 and 7 link only
to minimum 1 among those shown in this set. Moreover,
minimum 5 has no direct connection to any of the others of the
seven lowest-energy structures.

It is just this kind of information that an “enriched” network
diagram can provide. The disconnection diagram shows the
lowest-energy barrier but not the multiplicity of pathways.
The “enriched” network diagram is related to but goes beyond
the information in disconnection diagrams by including more
topography-specific information and, hence, additional semi-
quantitative insight into kinetic mechanisms and dynamics. For
example, we can infer from Figure 1 that, at temperatures that
just allow isomerization, we can expect to see minima 3 and 4
more populated than minimum 2, despite their being at higher
energies. Minimum 2 is simply less kinetically accessible
than the next two in energy. However, at somewhat higher
temperatures, the fact that there are three direct paths between
minima 1 and 2 indicates that when isomerization between
these two does occur, it can be expected to be facile. We know
that when multiple pathways are accessible at sufficiently
high temperature T, the kinetics deviates from the traditional
rate dependence of transition state theory,5 and the effective
rate constant k increases beyond the classical proportionality
between log k and 1/T.6

The geometric structures of those seven lowest-energy local
minima were among those found by Wales and Berry;7 they are
reproduced in Figure 2. All can be related to the icosahedron
that constitutes the global minimum, although minima 5, 6, and
7 are not so readily recognizable as such.

III. WATER OCTAMER

We move to a more complex system, the cluster of eight water
molecules, (H2O)8, represented by a TIP4P potential.8 There
are of course many simulations of water clusters, based on
various interaction potentials. One example using TIP4P, from
which we drew our diagram is the work of Wales and Hodges.9

Figure 3 is the enhanced network diagram showing the lowest
16 local minima for this system. Note that only five of those
minima have direct links between them and that the lowest
minimum is not one of those five. Roughly, minima 1 and 2 lie
rather deep on the potential energy surface; minima 3 through

Figure 1. Enhanced network for the lowest seven local minima of the 13-atom cluster bound by Lennard−Jones pairwise potentials. Energy units are
the scale parameter ε of the Lennard-Jones potential.

The Journal of Physical Chemistry C Article

DOI: 10.1021/jp5129782
J. Phys. Chem. C XXXX, XXX, XXX−XXX

B

http://dx.doi.org/10.1021/jp5129782


8 are somewhat higher, minimum 9 is higher still, and minima
10 through 16 are at the top of the energy scale of the figure.
Because this system is considerably more complex than the

LJ13 cluster, it is not surprising that there are far fewer links
directly connecting the low-lying minima of the water octamer.
Hence, we can expect clusters of water molecules to exhibit a
variety of structures, for example, in a mass-selected molecular
beam, in this octamer case at least two, in contrast to the single
icosahedron that we can expect for LJ13.

IV. SUMMARY AND CONCLUSIONS
By incorporating some of the semiquantitative information
regarding a complex potential surface into a limited network
diagram representing some of that surface, we can reveal useful
insights into the kinetics and dynamics that the system of
interest can exhibit. We can recognize pathways between
specific local minima and see whether each pathway is steep or
relatively flat and whether it is symmetric or very asymmetric.
We can see whether multiple pathways link two connected
minima and, from the heights of the upper pathways, get a
sense of the energy or temperature range at which the kinetics
linking those minima will deviate from transition state theory of
Arrhenius.5

This approach does not attempt to express quantitatively
how multiple pathways between nodes would affect the temp-
erature dependence of rates; it merely indicates the existence of
multiple direct pathways and their barrier heights. In that sense,
it does not address the role of free energies of excitation, as
addressed by Krivov and Karplus.10

It remains to be seen how much information we would
want to include in such diagrams. For example, would it be
useful to include 10 or 30 minima, hence, 10 or 30 nodes, in a
representation of a cluster of, say, 13 atoms? Clearly one would
not want to construct an enhanced diagram for 100 minima.
Closely related is the question of how large a system would
be usefully described by an enhanced network diagram. One
might, for example, want to determine how many nodes would
have to be included in order to estimate the number of minima
that could be connected, via multiple intermediate minima,
to the global minimum, given a temperature or energy of the
system. We shall not try to answer these questions here, but
merely raise them. They are the challenges that one now faces if
one wishes to apply “enriched network diagrams”.
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Figure 2. Seven lowest-energy structures of LJ13.

Figure 3. Enhanced network for the lowest 16 local minima of the water octamer, represented by the TIP4P potential. Energy units are kJ/mol.
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