
Sequential Matrix Completion

Author:

Anne MARSDEN

Churchill College

Supervisor:

Dr. Sergio BACALLADO

Advisor:

Dr. Anita FAUL

This dissertation is submitted for the degree of Masters of Philosophy
Centre for Scientific Computing

Department of Physics
University of Cambridge

August 2016

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 15,000 words including appendices, bibliography, footnotes,
tables and equations.

Anne Christina Marsden
August 2016

Acknowledgements

I would first like to acknowledge my incredible advisor, Sergio Bacallado. I came into the
MPhil with little statistics background and Dr. Bacallado devoted so much time to helping me
bridge that gap quickly. Thank you for always being there for any of my questions, listening
to all my hare-brained ideas, and giving me such a positive experience of pure research. I
can’t imagine this year without you as my advisor. Thank you again and again.

I next must acknowledge the Centre for Scientific Computing and all the people and parts
of it. First, a big thank you to Dr. Philip Blakely, who helped me get Theano installed and
running on the centre’s GPUs. Thank you to Dr. Anita Faul, who developed a great machine
learning community within the CSC and who was always so supportive- even when I needed
a ride to the train station! And thank you to Dr. Nikos Nikiforakis for the support and advice.
Also thank you to my fellow MPhil students- my coffee crew- for always being there to help
answer questions I was too afraid to ask Philip, bounce ideas off of, and take long coffee
breaks.

Next I would like to thank the Winston Churchill Foundation for the constant support and
for providing whatever I may need to do my research. To be a part of the Churchill Scholar
community was something I will never forget. Thank you to all the fellow Churchill Scholars
for constantly being an inspiration and a wonderful community of people with the most
interesting dinner conversations. And thank you to Churchill College and all the members of
the MCR for making this year so happy and fun.

Finally I must thank the people waiting for me back home. To Gareth- thank you for
making this year happy despite being so far away. To Kate and Milo thank you for being
wonderful and supportive siblings and always knowing how to make me laugh. To my
grandparents, aunts, uncles, and cousins- thank you for being the most wonderful family,
thank you for every letter and message and thank you for the “top three of the day”. And
finally and most importantly, thank you to my parents- words cannot express how lucky I am
to be your child and to know that, no matter what, you will be there for me.

Abstract

In this work we study sequential low rank matrix completion, or recommender systems.
This topic requires analysing first) methods to accurately estimate a missing entry from a
low rank matrix with only partial observations, second) methods to quantify the uncertainty
in that estimate, and third) methods that exploit this information in an optimal way. Here,
we construct a new recommender system. We address the task of matrix completion and
uncertainty quantification using a Bayesian approach. We use a Gamma process factor model
to estimate the complete matrix and the posterior distribution to quantify the uncertainty. We
compare the performance of estimating the posterior using stochastic variational inference
(SVI) to stochastic gradient Langevin dynamics (SGLD). To choose the sequence of entries to
observe in each iteration we use Thompson sampling. As a baseline comparison we include
a singular value thresholding method. Through simulation with both synthetic data sets and
the MovieLens data set, we find that the Bayesian method outperforms the singular value
thresholding method when the data is higher rank. The performance is particularly good
when the posterior distribution is estimated using SVI.

Contents

1 Introduction 1
1.1 Recommender systems . 1
1.2 Exploration-exploitation tradeoffs and bandit algorithms 2
1.3 Matrix Completion . 6

1.3.1 Convex Optimisation Methods . 6
1.3.2 Matrix Completion with Bayesian Methods 12

1.4 Variational Inference . 15
1.4.1 Introduction . 15
1.4.2 Big Data and Variance Reduction Methods 17

1.5 Langevin Method . 20

2 Approximate Thompson sampling for sequential matrix completion 23
2.0.1 Stochastic Variational Inference Method 26
2.0.2 Stochastic Gradient Langevin Dynamics Method 28
2.0.3 Singular Value Thresholding Method 30

3 Results 31
3.1 Posterior Estimation Tests . 31
3.2 Bandit Results with Synthetic Data . 33
3.3 Bandit Results with MovieLens Data . 39

4 Conclusion 41
4.1 Discussion of Results . 41
4.2 A new proposal . 42

Bibliography 47

Appendix A Proof of the analytical expression for the optimal ELBO update 51
A.1 The KL Divergence is nonnegative . 51

x Contents

A.2 The Mean Field Method Update Equation 52

Appendix B Frobenius Normed-Error of Estimator Bounds Regret 53

Chapter 1

Introduction

1.1 Recommender systems

Recommender systems, or collaborative filtering, became an important area of research
within the last twenty years as a multitude of settings began to arise in which users are
faced with an excessive amount of information and would benefit from recommendations
for products or services that suit them. A recommender system uses a database about user
preferences to predict new products or services to recommend. Commonly this database is
represented as a matrix where, without loss of generality, each row represents a user, each
column represents a product, and the row-column pair represents the user’s rating of the
product. Formally, let M ∈ RDxN be the full true matrix with only a few, possibly noisy,
observed entries. Let Zt ∈

{
eieT

j ; i, j ∈ [n]
}

and let Z = {Zt} be our small set of observations
so that for each Zt ∈Z we have corresponding observation Yt as,

Yt = tr(ZT
t M)+ εt , (1.1)

where εt is the noise in the observation.
Research on recommender systems has focused on the matrix completion problem.

Candès and Recht [8] showed that, if we assume the rewards matrix is of low-rank — or
that user preferences are explained by a few latent features — it is possible to complete a
matrix from a small set of possibly noisy observations. This research will be reviewed in
Section 1.3. Our aim here is to study the matrix completion problem sequentially. Briefly, we
would like to find a sequential rule or policy for product recommendation which will yield
the highest possible ratings after a finite time horizon. For simplicity we assume that if our
recommender system makes a recommendation to a user, the user will respond with their
rating of that item.

2 Introduction

More formally, suppose at each step we can choose an action Zt that corresponds to
observing some, possibly corrupt, entry of the matrix. Where, here, the source of corruption
would be that the user does not rate the product consistently. We define the reward, or rating,
for taking action Zt at step t as,

rt,Zt = (tr(ZT
t X)+ εt)β

Tt,Zt , (1.2)

where (εt)t≥1 is a sequence of independent noise variables with mean 0 and variance σ2. The
variable Tt,Zt counts the number of times that action Zt has been chosen before time t, and
the parameter β ∈ [0,1] determines a geometric discounting due to observing the same entry
of the matrix repeatedly. The role of β is for theoretical purposes since it allows resampling
in order to construct confidence intervals for potential future methods, as well as for practical
purposes since it ensures that the same product will not be recommended to the same user
too many times. Note, for nonnegative entries, β = 0 is the case when we make a certain
recommendation at most once and β = 1 is the case when the recommender simply aims to
discover the maximum value of the matrix.

At each step t, the experimenter observes the reward rt,At for the action chosen, At . We
define the pseudo-regret for finite-horizon M as,

RM(A) = sup
Z1,...,ZM

E
(M

∑
t=1

rt,Zt

)
−E

(M

∑
t=1

rt,At

)
. (1.3)

The goal of our recommender system is to construct an estimator policy with as little pseudo-
regret as possible.

1.2 Exploration-exploitation tradeoffs and bandit algorithms

Our estimator policy relies on an accurate reconstruction of the complete matrix, M, knowing
only observations corresponding to Z . Note that this is only feasible when M is low rank.
The methods to construct a good estimator typically need the observed entries to be distributed
around the matrix. For instance, imagine an estimator policy that only interacts with one
user. Then it would have no hope of completing the matrix to know about the other user
preferences. In this sense the estimator policy must explore the user-item pairs. On the other
hand, the policy must begin to exploit user-item pairs that are expected to be optimal to have
as little regret as possible.

This type of problem relates to well-studied strategies on the multi-armed bandit problem.
The narrative for this problem is as follows. A player is at a casino with multiple slot

1.2 Exploration-exploitation tradeoffs and bandit algorithms 3

machines, called a “multi-armed bandit”. At each step he chooses an arm to pull and then
observes the reward of his choice. The assumption is that the rewards of each machine
are drawn from some underlying distribution. To perform well the player must have a
good “exploration-exploitation” trade-off. That is, he must pull each arm enough to get
an idea of their underlying distributions, but he must also begin to exploit the arms that
seem to have high rewards. Historically, bandit problems have been analyzed using either a
frequentist or Bayesian perspective. The frequentist analysis assumes the parameter of the
model describing the distribution of rewards from each arm is a fixed but unknown value. The
Bayesian analysis assumes that the parameter comes from some prior distribution. Suppose
there are K arms with underlying parameters θ1, ...,θK ∈ Θ that respectively describe the
distribution of rewards for each arm. At time t we choose some action At,θ , which depends
on the history of rewards before it and corresponds to some arm j. The action then gets
a reward Xt which comes from the i.i.d sequence of rewards from arm j, (Yj,t)t≥1, which
has distribution νθ j and expectation µ j(θ j). The measure of performance for a frequentist
analysis is the cumulated regret, which at time t = n is,

Rn(θ) = Eθ

[n

∑
t=1

µ
∗−µAt,θ

]
, (1.4)

where µ∗ = max
{

µ j, j ∈ [K]
}

.
With regard to minimising Rn(θ), the most effective algorithm has proved to be the

Upper Confidence Bound (UCB) strategy [5]. Let Xi denote the distribution of rewards from

arm i. Let µ̄i,t be the empirical average of s draws from arm i, so µ̄i,s =
1
s

s
∑

m=1
Xi,m. A UCB

algorithm uses the history of rewards to construct a confidence interval on the mean of each
arm so that the true mean lies in the interval with probability 1−α , where α can be tuned.
Let Ci,t be the upper band of a confidence interval centred at µ i,si,t

. The policy chooses arm
It in the tth step by computing

argmaxi[Ci,t], (1.5)

and selecting an arm from this set. Analyzing this, one can see that arms that haven’t been
explored will be likely to be selected due to their large confidence interval, and as t grows,
arms that have proven to be profitable will be exploited. Bubeck and Bianchi provide a bound
on the regret for the UCB strategy in the case where for each arm i there is a convex function
φ on the reals such that ∀λ ∈ R,

E[eλ (Xi−E[Xi])]≤ eφ(λ) , E[eλ (E[Xi]−Xi)]≤ eφ(λ), (1.6)

4 Introduction

with this assumption they are able to construct a general upper confidence bound on the mean
of each arm. They show that, in the case of Bernoulli rewards, this is essentially the best
regret possible [5].

Alternatively, from the Bayesian perspective let π1, ...,πK parameterize the prior distri-
butions of θ1, ...,θK . A Bayesian measure of performance is the regret averaged over the
parameters θ1, ...,θK with respect to π1, ...,πK . Formally, the Bayesian regret up to time
t = n is,

Rn = Eπ

[
Rn(θ)

]
, (1.7)

where Rn(θ) is as described in Eq. 1.4. The policy which minimises Bayes regret is known as
Bayes-optimal and is typically the solution to an intractable dynamic program. An important
exception is the case of a geometrically discounted multi-armed bandit, in which the Gittins
index strategy is provably Bayes-optimal [29].

An effective and simple strategy from both Bayesian and frequentist perspectives is
Thompson Sampling. Let πi,t denote the posterior distribution for the mean of arm i, µi, at the
tth-round. We draw from the posterior θi,t ∼ πi,t and then choose action Zt ∈ argmaxµi,t(θi,t).
Kaufmann et al. show that Thompson sampling attains essentially the same regret as the
UCB-algorithm [15].

They devise an algorithm that is inspired by both Thompson sampling and the UCB
method, the “Bayes-UCB” approach. Through simulation they show that this approach proves
optimal when evaluated by the frequentist regret. We briefly describe the approach. Let
Q(t,ρ) be the “quantile function” with respect to distribution ρ so that Pρ(X ≤ Q(t,ρ)) = t.
While this is not the same as the confidence intervals constructed in the UCB strategy, it has
a similar flavor. Let n be the horizon, Π0 be the initial prior, and c be an adjustable constant.
In this notation we use θ j to denote the parameter describing the distribution of the rewards
of arm j, but we also use it to denote the probability distribution function as well.

1.2 Exploration-exploitation tradeoffs and bandit algorithms 5

Algorithm 1 Bayes-UCB [15]

Initialize n, Π0, and c.
for t=1, ..., n do

for j=1, ..., K do
compute

q j(t) = Q
(

1 =
1

t(logn)c ,θ
t−1
j

)
(1.8)

end for
take action Zt = arg max j=1,...,Kq j(t)
using reward Xt = YZt ,t update the posterior distribution Πt ,

π
t
j(θ j) ∝ θ j(Xt)π

t−1
j (θ j). (1.9)

end for

Lai and Robbins have provided a lower bound on the number of suboptimal draws for any
“good policy” (i.e. the regret is o(n)). Kauffman et al. show that for the case of Bernoulli
rewards, this algorithm achieves this lower bound. They apply the algorithm to many different
types of distributions and show promising simulation results.

Another important approach to bandit problems is the ε-greedy strategy. Let εt ∈ (0,1)
and at each step choose action Zt with one of the methods described above with probability
1− εt and choose an arm uniformly at random with probability εt . Auer et al. [5] show that
if εt evolves in a specific manner then the regret grows logarithmically.

Finally, Russo and Van Roy [25] provide Bayesian regret bounds for the setting in which
only Thompson sampling is used to determine the policy. If the set of possible actions is
finite and the rewards lie in a bounded set, then we have that

Rn ≤ 2min{|A|,T}+4
√

KT (2+6log(T)), (1.10)

where A denotes the set of possible actions and T is the horizon. In the case of matrix
completion where β > 0, A is the set of the matrix entries and so for an N×D matrix the
Bayeson regret is bounded by 2T +4

√
NDT (2+6log(T)).It is worth noting that this bound

is probably quite weak since the true dimensionality of a low rank matrix is smaller than
N×D.

Whether to choose Thompson sampling or a UCB-type algorithm depends on the setting.
From a UCB-type algorithm it is generally easier to obtain frequentist guarantees. However,

6 Introduction

tight confidence intervals can be more difficult to derive and compute than estimating the
posterior distribution. In this case, Thompson sampling is more convenient and efficient.

1.3 Matrix Completion

For exploitation a good estimation method is critical, while for exploration a good quantifi-
cation of uncertainty is required. Indeed, see Appendix B, which proves that the regret of
any policy is bounded above by the frobenius-normed error of its estimator. Here we review
methods for constructing an estimator of the partially observed matrix.

1.3.1 Convex Optimisation Methods

Recovering a low rank matrix knowing only a small portion of (possibly corrupt) matrix
entries arises in a multitude of different problems including our case of recommender systems
as well as dimensionality reduction, embedding problems, and multi-class learning [23].
Recall the notation, let M ∈ RDxN be the true matrix, let Zt ∈

{
eieT

j ; i, j ∈ [n]
}

and let
Z = {Zt} be our set of observations so that for each Zt ∈Z we have,

Yt = tr(ZT
t M)+ εt , (1.11)

where εt is the noise in the observation. First we give a brief summary of the current methods
when there is no noise. Define PZ : RDxN → RDxN to be the operator such that

(
PZ (X)

)
i j
=

Xi j, if Zi j ∈Z

0, else.
(1.12)

A powerful way of addressing the task of low rank matrix completion without noise is to
solve

minimize
x

rk(X)

subject to PZ (X) = PZ (M).
(1.13)

However the rank minimization problem is NP-hard and there exist no efficient algorithms to
solve it [7]. We instead solve the tightest convex relaxation of the problem,

minimize
x

||X ||∗

subject to PZ (X) = PZ (M),
(1.14)

1.3 Matrix Completion 7

where ||X ||∗ denotes the nuclear norm, so if X = ∑
rk(X)
i=1 σiuiv∗i is the singular value decom-

position of X , then ||X ||∗ = ∑
rk(X)
i=1 σi is the sum of its singular values. [7] shows that, if the

entries Z are chosen uniformly at random, and with a few assumptions on the matrix that
are satisfied in most cases, the unique solution to the convex nuclear norm minimization
problem above recovers, with high probability, all the entries of M with no error. In [10] it is
proven that this method is nearly as good as any other possible method for exact recovery.

Following the explanation in [7] we give an idea as to why the true matrix M is, with high
probability, the unique minimizer to the convex nuclear norm minimization problem. The
idea is to show that any perturbation around M, say M+H, satisfying PZ (M+H) = PZ (M)

will only have increased nuclear norm.
First we define a few bits of notation,

•
{

u1, ...,urk(M),v1, ...,vrk(M)

}
are such that M = ∑

rk(M)
i=1 σiuiv∗i

• ||·|| denotes the spectral norm (i.e. the largest singular value),

• PU denotes the matrix with rows u1, ...,urk(M),

• PV denotes the matrix with columns v1, ...,vrk(M),

• T denotes the linear space spanned by {uix∗,yv∗i }
rk(M)
i=1 , where x,y ∈ RN ,

• T⊥ denotes the space perpendicular to T ,

• W denotes any matrix such that ||W || ≤ 1, PUW = 0, and WPV = 0, (i.e. W ∈ T⊥),

• ∂ ||M||∗ denotes the subdifferential of ||·||∗ at M ,

• E denotes any matrix such that PT (E) = ∑
rk(X)
i=1 uiv∗i .

In the proofs that follow we make use of the fact that, for any subspace S, the projection
operator PS satisfies

⟨PSA,B⟩= ⟨A,PSB⟩, (1.15)

where ⟨A,B⟩= tr(A∗B).
We begin with the following theorem.

Theorem 1. M is a solution to the convex program (1.14) if and only if there exists some
Λ = E +W, with E and W as defined above, such that PZ (Λ) = Λ.

8 Introduction

Proof 1. The dual function of (1.14) is

L(X ,λ) = ||X ||∗+ ⟨Λ,PZ (X−M)⟩, (1.16)

where ⟨Λ,PZ (X −Y)⟩ = tr(Λ∗(X −M)). Since ||·||∗ is a convex function, by the Karush-
Kuhn-Tucker conditions, M is a solution to the convex program (1.14) if and only if ∃Λ such
that ∀X ∈ RDxN , L(X ,Λ)≥ L(M,Λ), or equivalently,

||X ||∗+ ⟨Λ,PZ (X−M)⟩ ≥ ||M||∗+ ⟨Λ,PZ (M−M)⟩, (1.17)

so,
||X ||∗ ≥ ||M||∗+ ⟨PZ Λ,M−X⟩, (1.18)

which is true if and only if PZ Λ ∈ ∂ ||M||∗. Thus, M solves (1.14) if and only if ∃Λ such that
PZ Λ ∈ ∂ ||M||∗. Now, letting X = 0 we have that any PZ Λ ∈ ∂ ||M||∗ must satisfy

⟨PZ Λ,M⟩ ≥ ||M||∗ or equivalently, tr((PZ Λ)∗M)≥ ||M||∗, (1.19)

where we bound the spectral norm: ||PZ Λ|| ≤ 1. Since the spectral norm and nuclear norm
are dual to one another it is true that

sup
||W ||≤1

tr(W ∗M) = ||M||∗. (1.20)

Therefore if PZ Λ ∈ ∂ ||M||∗ from Eq 1.19 and Eq 1.20 it must be that

tr((PZ Λ)∗M) = ||M||∗. (1.21)

Notice that PT (M)=M and thus for any X, tr(X∗M)= ⟨X ,M⟩= ⟨X ,PT (M)⟩= ⟨PT (X) ,M⟩=
tr
(
PT (X)∗M

)
. For some X let

PT (X) = ∑
k1

λk1uk1x∗k1
+∑

k2

λk2yk2v∗k2
, (1.22)

1.3 Matrix Completion 9

be the singular value decomposition of PT (X). Then notice that if ||X || ≤ 1 and X ̸= E then

tr(X∗M) = tr
(
PT (X)∗M

)
= tr

((
∑
k1

λk1uk1x∗k1
+∑

k2

λk2yk2v∗k2

)∗(rk(M)

∑
i=1

σiuiv∗i

))
< ∑

k1

λk1σk1 +∑
k2

λk2σk2

<
rk(M)

∑
i=1

σi = ||M||∗,

(1.23)

where the first inequality follows because uix∗i < uiu∗i if x ̸= ui and the second inequality

follows because ||X || ≤ 1. Therefore, PT (PZ Λ) =
rk(M)

∑
i=1

σi. And thus we must have,

PZ Λ = E +W, (1.24)

since in this case we have

tr((PZ Λ)∗M) = tr
(
(E +W)∗(

rk(M)

∑
i=1

σiuiv∗i)
)

=
rk(M)

∑
i=1

σi + tr
(

W ∗
rk(M)

∑
i=1

σiuiv∗i

)

=
rk(M)

∑
i=1

σi = ||M||∗.

(1.25)

Thus if we find some Λ supported on the image of PZ , then Λ = PZ Λ = E +W and M solves
Eq 1.14.

Now we want to show that if M solves Eq 1.14, it is unique. This follows from the
following two lemmas.

Lemma 2. Suppose there exists some Λ = E+W, PZ Λ = Λ. Then for any legal perturbation
H (legal in that PZ (H) = 0) we have,

||M+H||∗ ≥ ||M||∗+(1−||PT⊥(Λ)||)||PT⊥(H)||∗ (1.26)

Proof 2. Since the nuclear norm and spectral norm are dual to one another there exists some
Z, ||Z|| ≤ 1 such that

⟨Z,PT⊥(H)⟩= ||PT⊥(H)||∗. (1.27)

10 Introduction

Let W0 = PT⊥(Z) so that

⟨W0,H⟩= ⟨PT⊥(Z),H⟩= ⟨Z,PT⊥(H)⟩= ||PT⊥(H)||∗ (1.28)

Let Z′ = E +W0 and notice that since ||W0|| ≤ 1 and W0 ∈ PT⊥ , then Z′ ∈ ∂ ||M||∗. Then by
definition of a subgradient we have,

||M+H||∗ ≥ ||M||∗+ ⟨Z′,H⟩. (1.29)

Since Λ = E +W and Z′ = E +W0 we have Z′ = Λ+W0−W. Plugging in to the above
equation gives us,

||M+H||∗ ≥ ||M||∗+ ⟨Λ,H⟩+ ⟨W0−W,H⟩. (1.30)

Using fact (1.15) and that

Λ = PZ (Λ) and W −W0 = PT⊥(W0−W), (1.31)

we can rewrite the equation above as

||M+H||∗ ≥ ||M||∗+ ⟨Λ,PZ (H)⟩+ ⟨W0−W,PT⊥(H)⟩. (1.32)

Finally we note that

• PZ (H) = 0

• ⟨W0,PT⊥(H)⟩= ⟨PT⊥(W0),H⟩= ⟨W0,H⟩= ||PT⊥(H)||∗

• ⟨W,PT⊥(H)⟩ ≤ ||W || ||PT⊥(H)||∗

Using these we get that

||M+H||∗ ≥ ||M||∗+(1−||W ||)||PT⊥(H)||∗ (1.33)

Lemma 3. Suppose there exists some Λ=E+W, PZ Λ=Λ, with strict inequality ||PT⊥(W)||<
1. And suppose that PZ restricted to T is injective, then M is the unique solution to the
convex program (1.14).

Proof 3. From the above proof we have that

||M+H||∗ ≥ ||M||∗+(1−||W ||)||PT⊥(H)||∗. (1.34)

1.3 Matrix Completion 11

So we only need to show that (1) 1−||W || ̸= 0 and (2) ||PT⊥(H)||∗ ̸= 0. Strict inequality of
the spectral norm of W ensures (1). As for (2) notice that if PT⊥(H) = 0, then H ∈ T . Then
by injectivity of PZ and the fact that PZ (H) = 0, we have H = 0.

All that is left to prove the solution to the convex program recovers exactly the true matrix
is to prove the existence of such a Λ and injectivity of PZ restricted to T . To see the details
of this proof consult [9].

This proof assumed no noise in the observations. In most applications however, the
observed entries of Y have some corruption. Recall the original model

Yt = tr(ZT
t M)+ εt , (1.35)

where εt is the noise in the observation. Let ε be the matrix with entries εt . Assume that
||PZ (ε)||F < δ . In this case we solve

minimize
x

||X ||∗

subject to ||PZ (X−Y)||F≤ δ

(1.36)

In [7], Candès and Plan show that, under certain conditions that assure the existence of a
Λ and the injectivity of PZ restricted to T as described above, the solution to (1.36), call it
M̂, satisfies

||M− M̂||F ≤ 4

√
Cpmin(N,P)

p
δ +2δ , (1.37)

where p is the fraction of observed entries and Cp = 2+ p.
The convex optimisation problem can be solved through an iterative Singular Value

Thresholding (SVT) algorithm. In what follows, we apply a sequential policy for matrix
completion which employs the SVT estimate of the matrix. The regret of this policy will
depend on the rate at which the error in the matrix estimate decays (see Appendix B). In [8]
it is shown that for an N×D matrix, if the number of observed entries m satisfies

m≥C
√

NrlogD, (1.38)

for some constant C, then matrix completion will be exact with very high probability. Thus,
for the analysis of our estimator policies we only need to consider the horizon before which
it is possible to complete the entire matrix with high accuracy.

12 Introduction

1.3.2 Matrix Completion with Bayesian Methods

We discuss three different models to perform low rank matrix completion in a Bayesian way.
The Beta-Binomial process, the infinite factor model, and the Gamma process. Regardless of
the model, completing a low rank matrix in a Bayesian way requires calculating or estimating
the posterior distribution of the model. Several different methods are possible and most of
the literature reviewed below employs Gibbs sampling for posterior inference. The next
main section of this chapter discusses stochastic variational inference and stochastic gradient
Langevin dynamics as methods to sample from the posterior distribution for models with big
data.

Beta-Binomial

Let M ∈ RDxN be the data matrix whose column vectors are the observations mn ∈ RD. In
the Beta-Binomial process we assume that each column of Y can be written as

mn =
K

∑
k=1

λkznkukvT
k + εn, (1.39)

where λk ∈ R, znk ∈ {0,1}, uk ∼ N
(
0, 1

D ID
)
, vk ∼ N

(
0, 1

N IN
)
, and εn ∈ RD. Let Z denote

the N×K matrix with entries znk and columns denoted as Zn. Note that with this form the
columns of M are independent given {uk}, Z, and λ . Let Λn ∈ RK×K be a diagonal matrix
such that (Λn)kk = λ 2

k znk. We can integrate out the vks to get that

mn|λ ,Z,U ∼ N
(

0,
1
N

UΛnUT +σ
2ID

)
, (1.40)

where U ∈ RD×K is the matrix with columns uk. If znk = 1 then observation mn observes uk

and if znk = 0 then it does not. Note that the number of k for which ∃ n such that znk = 1
gives the rank of the matrix. The Indian Buffet Process (IBP), which is a distribution over
matrices Z ∈ {0,1}NxK where K is unfixed, is used to define a model that favors a lower
rank matrix. In practice, since K corresponds to the rank of the matrix, it exceeds D with
very low probability, however in high dimensional problems D is very large and so treating
K as possibly infinite makes sense. The analogy to understand the IBP is that a series of
N customers in an Indian Buffet restaurant choose dishes to sample. Customer n samples
a dish with probability proportional to its popularity (i.e. the number of customers that
have already sampled the dish), and then explores Poisson(α/n) new dishes. In this case
the customers are the observations mn and the dishes are the uks. If customer mn samples
dish uk then znk = 1 and otherwise znk = 0 [13]. One can show that for any permutation σ

1.3 Matrix Completion 13

we have that P(Z1, ...Zn) = P(Zσ(1), ...,Zσ(n)), i.e. exchanging the order of the customers
gives the same probability. Given some underlying distribution B that renders the sequence
{Zi} conditionally independent, by the de Finetti Theorem it holds that for any infinitely
exchangeable distribution

P(Z1, ...,Zn) =
∫ N

∏
i=1

P(Zi|B)dP(B). (1.41)

Thibaux & Jordan ([28]) find that the underlying distribution that renders the sequence of cus-
tomers conditionally independent is the Beta-Bernoulli process. We draw πk ∼ Beta(a/K,1)
and then znk|πk ∼ Bernoulli(πk). The Indian Buffet Process is the distribution over Z as
K→ ∞. For a more complete review on the Indian Buffet Process and the Beta Bernoulli
Process the reader is referred to [13], [27]. In practice we draw πk ∼ Beta(a/K,b(K−1)/K)

which allows the number of new “dishes” explored by customer n to have some dependence
on the diversity of dishes already explored rather than being a draw from Poisson(α/n). One
can see that through the choice of a and b one can tune the rank of the data. We define the
full model below as described in [32],

mn ∼ N
(

0,
1
N

UΛnUT +σ
2ID

)
uk ∼ N

(
0,

1
D

ID

)
λk ∼ N(0,β−1)

znk ∼ Bernoulli(πk)

πk ∼ Beta(a/K,b(K−1)/K)

β ∼ G(1,1).

(1.42)

For a more complete review of results with this approach see [32]. Large-scale problems
are considered using Gibbs sampling yielding encouraging results compared to existing
methods.

Infinite Factor Model

In the Infinite Factor Model we assume that each column of M can be written as

mn =
K

∑
k=1

ukvT
k + εn, (1.43)

where the prior construction is as follows.

14 Introduction

ui j ∼ N

0,

(
γi j

j

∏
ℓ=1

δℓ

)−1
 , vi j ∼ N(0,1)

εn ∼ N(0,s)

γi j ∼ Gamma(1/2,1/2)

δ1 ∼ Gamma(a1,1), δℓ ∼ Gamma(a2,1) ℓ≥ 2

a1 ∼ Gamma(1,b), a2 ∼ Gamma(1,b)

s∼ Exp(1).

(1.44)

This model begins with a conceivably infinite number of factors and a finite number of
factors manifests in learning a δℓ > 1 and a bound on each γi j. In this case as k→ ∞ we

have
(

γi j ∏
j
ℓ=1 δℓ

)−1
→ 0, which in turn means that uk→ 0. Bhattacharya and Dunson [3]

use this model with a simple Gibbs sampler to learn the posterior distribution. They show
it performs well compared to other competitive methods in covariance matrix estimation,
regression coefficient estimation, and variable simulation.

Gamma Process

Finally, in the Gamma process setting we assume that our data can be modeled so that mn|xn∼
N(Wxn,σ

2I) where xn ∼ N(0,IK). We can integrate out xn to get that mn ∼ N(0,WWT +

σ2I). In this model we place a gamma prior on the entries of W and use a hierarchical
gamma process to complete the prior construction for W,

Wdk|rk,γ ∼ G(γrk,γ)

rk|γ0,c0 ∼ G(γ0/K,c0)

γ ∼ G(1,1)

γ0 ∼ G(1,1)

c0 ∼ G(1,1).

(1.45)

Where G(x|a,b) denotes the gamma distribution

G(x|a,b) = ba

Γ(a)
xa−1e−xb. (1.46)

As was the case for the two models previously discussed, this model in practice assumes a
large fixed value of K. Unlike the other two models, it is difficult to explicitly calculate the
number of latent factors. The Gamma process performs a soft thresholding on the true number

1.4 Variational Inference 15

of latent factors, K∗, in that along each row of W there will be roughly K∗ positive entries
and K−K∗ entries closer to zero. We now discuss how to learn the posterior distribution in
these Bayesian models in a more efficient way.

For all of these Bayesian methods, it is key to learn the posterior distribution in a
computationally efficient way. MCMC methods can be unacceptably slow and while the
authors for the infinite factor model and the Beta-Binomial process are able to use efficient
Gibbs-sampling, they are not able to apply the models to big data. This motivates the next
section, which introduces a methodology for fast and efficient posterior learning.

1.4 Variational Inference

1.4.1 Introduction

A key task in many machine learning applications is to calculate posterior moments in
Bayesian analyses of probabilistic models. Historically, Markov Chain Monte Carlo (MCMC)
has been used to do this [4]. In this section we present an alternative method, stochastic
variational inference (SVI). Stochastic variational inference approximates the posterior
distribution and as algorithm evolves, minimizes the “distance” between the true posterior and
the approximated variational distribution. SVI has been used in many different applications
including our application of recommender systems, large scale document classification [14],
computer vision [4], and a multitude of data sets across many different fields. It has been
found to be faster and more easily scalable to big data sets than MCMC methods. In what
follows, we develop the general theory of stochastic variational inference and describe
methods to make it more scalable to big data.

Let π(x,D), π(x), and π(x|D) denote the joint, prior, and posterior distributions respec-
tively, where D is the observed data. Suppose π(x|D) is intractable, then let qθ be the
“variational distribution” which is an estimate of π(x|D). The goal of Variational Inference is
to optimize the parameters θ of qθ so that it is as close as possible to π(x|D). “Closeness” is
measured by the Kullback-Leibler divergence:

KL(π(·|D)||qθ) =
∫

χ

π(·|D)log
π(x|D)

qθ (x)
dx = Eπ(x|D)[logπ(x|D)]−Ep[logqθ (x)]. (1.47)

In general, KL(π(·|D)||qθ) cannot be calculated since π(x|D) is intractable. Instead of
minimizing the KL divergence one can obtain the same result by maximizing the evidence

16 Introduction

lower bound (ELBO):

L(θ) =
∫

χ

qθ (x)log
π(x,D)

qθ (x)
dx

= Eqθ
[logπ(x,D)]−Eqθ

[logqθ (x)]

= Eqθ
[logπ(x,D)]−Eqθ

[logqθ (x)].

Note that π(x,D) = π(x|D)π(D) and is much easier to evaluate than π(x|D). Another
way of writing L(θ) shows clearly that it is a lower bound on the log likelihood of the data:

L(θ) =
∫

χ

qθ (x)log
π(x|D)

qθ (x)
dx+ logπ(D)

∫
χ

qθ (x)dx

=−KL(qθ ||π(·|D))+ logπ(D)≤ logπ(D),

where the last inequality holds because the KL-divergence is nonnegative (A.1).

In the Mean Field Method we assume that our approximation to the posterior can be fully
factorized:

qθ (x) =
D

∏
i=1

qθi(xi). (1.48)

With this fully factored form we can analytically derive an expression for each qθ i(xi)

that produces a local maximum for L(θ) (A),

qθi(xi) =
1
Zi

exp
(
Eq−i

[
logπ(x,D)

])
, (1.49)

where q−i is the posterior distribution of all parameters excluding the ith and Zi is a
normalization constant. When Equation 1.49 can be solved for analytically, the variables
are updated via coordinate ascent. Coordinate ascent variational inference (CAVI) works
similarly to Gibbs-Sampling where the parameters are iteratively set to their local maximum,
dependent on the setting of the other parameters [12]. If we are working with conjugate
exponential families then the above expression is often in closed form and can be calculated
exactly [14]. However, conjugate exponential families are sometimes limiting and a more
complex model is needed to describe the data. In these cases, the update equation is not
necessarily available analytically. Stochastic Variational Inference (SVI) uses the idea that
the posterior distribution can instead be updated using gradient ascent, where the gradient is
a noisy, unbiased, estimate of the true gradient. If the noisy estimate of the gradient can be
obtained more easily then this allows variational inference to be applied to many types of
models and larger data sets.

1.4 Variational Inference 17

We update qθi(xi) to maximize L(θ) by taking a noisy, but unbiased estimate of the
gradient

∇θ L(θ) = ∇θEqθ
[logπ(x,D)− logqθ (x)]. (1.50)

Note that we update qθi(xi) by updating only the parameter θi that describes it within some
probability distribution form, we do not allow qθi(xi) to change to a different form of
probability distribution. We thus update

θ
(t) = θ

(t−1)+ρt∇θ L(θ (t−1)), (1.51)

where ρt is the step-size. Robbins & Munro [24] showed that if the estimate of the gradient
is unbiased, so E(∇θ L(θ)) = ∇θ L(θ) and

∑ρt = ∞ and ∑ρ
2
t < ∞ (1.52)

then convergence to the optimal θ is assured. Although convergence is assured, it can be
unacceptably slow. We discuss our method of increasing the speed of convergence in the
next chapter.

1.4.2 Big Data and Variance Reduction Methods

A difficulty of stochastic variational inference is scalability. Many models arise in the
context of big data for which there is a small set of global parameters and a large set of local
parameters [14]. Examples of this type of model are the hierarchical Dirichlet process topic
model, latent Dirichlet allocation, and the model we use later in this work. In these types of
situations, the ELBO can be separated into a global term and a sum of local terms. Let p(x)
denote the joint distribution π(x,D) for simplicity. Let φi denote the ith local variable. Then
the ELBO is,

L(θ) = Eqθ
β
[logπ(β)− logqθβ

(β)]+
N

∑
i=1

Eqθφi
[logπ(φi|β)− logqθφi

(φi|β)]. (1.53)

Variational inference using coordinate ascent can be slow because the global variational
parameter update depends on all the local variational parameters. Thus the local variational
parameters must all be optimized before the global parameters can be reevaluated. Hoffman
et al. [14] alter this so that the gradients of the ELBO are computed much more cheaply
but are still unbiased estimates. A uniformly picked local variational parameter is locally
optimized given fixed values of the global variational parameters. Then the global variational
parameters are updated via stochastic gradient ascent using the optimized local variational

18 Introduction

parameter as though it represented the entire set of local variational parameters. Choose
t ∈ {1, ...,N} uniformly and optimize φt with β fixed. Then approximate the ELBO as

Lt(θ) = Eqθ
β
[logπ(β)− logqθβ

(β)]+NEqθφt
[logπ(φt |β)− logqθφt

(φt |β)]. (1.54)

And since Et [L(θ)] = L(θ) this is an unbiased estimate that is much cheaper to compute.
This is used to update the global parameters. Then the local variational parameters are
updated via coordinate ascent (which could be approximated stochastically if the update
equation cannot be solved for analytically).

Algorithm 2 Scalable Stochastic Variational Inference [14]

Initialize θ (0) and set a step size schedule ρt .
repeat

Sample β ∼ qθβ
.

Choose index t ∼ Unif(1, ...,N).
Optimize the local parameters φt with respect to β (t) to construct Lt(θ).
Update θ

(t+1)
β

= ρtθ
(t)
β

+(1−ρ)∇θβ
Lt(θ

(t)).
Update local parameters φi using coordinate ascent.

until Convergence

Now we consider maximizing the ELBO via stochastic gradient ascent. Let f (x) =
logp(x,D)− logqθ (x), we have the following identity:

∇θ L(θ) = ∇θEqθ
[f (x)] = Eqθ

[f (x)∇θ logqθ (x)]. (1.55)

We can approximate this stochastically as

∇θEq[f (x)]≈
1
S

S

∑
s=1

f (x(s))∇θ logqθ (x(s)), (1.56)

where x(s) ∼ qθ . Let g(x) be a function whose expectation with respect to qθ can be
calculated analytically and that approximates f (x) well in the highly probable regions of qθ .
An important component of the stochastic gradient method is to reduce the variance of the
approximation to the gradient. Several different methods have been introduced to do this
[22], [19]. One popular method is the control variate method, which uses a tractable function
g that is highly correlated with the intractable update equation and then corrects the gradient
for bias [22]. Here, by “tractable” we mean that g has an analytical form. We construct our

1.4 Variational Inference 19

control variate f̂ so that it has the same expectation as f (x) and variance as small as possible

f̂ (x) = f (x)−a
(
g(x)−Eq[g(x)]

)
. (1.57)

Choosing a = Cov(f ,g)
Var(g) ensures that f̂ has minimal variance, however the variance and

covariance are unknown and so are approximated with the sample variance and covariance
that are generated by the stochastic variational algorithm. It can be shown that the reduction
in variance is directly related to the correlation between f and g so that the variance is
reduced more when f and g are more highly correlated. The stochastic approximation with
reduced variance then becomes

∇θEq[f̂ (x)]≈ ∇θEq[f (x)−a
(
g(x)+Eq[g(x)]

)
]

= a∇θEq[g(x)]+
1
S

S

∑
s=1

(
f (x(s))−ag(x(s))

)
∇θ logq(x(s)|θ).

(1.58)

This describes how to construct a control variate for f (x), however it would be better to
construct a control variate for f (x)∇θ logq(x|θ) which follows the same method with a
modification described in [22]. A simple form of the algorithm is given below.

Algorithm 3 Stochastic Variational Inference using Control Variates [22]

Initialize θ (0) and step size schedule ρt .
repeat

Let g(x) be a tractable function that is highly correlated with f (x).
Sample a small collection x(s) ∼ q(x|θ) to form a.
Using the samples to approximate Cov(f ,g) and Var(g) set a = Cov(f ,g)

Var(g) .

Sample x(s) ∼ q(x|θ) for s = 1, ...,S, where S is an appropriate sample size.

Construct stochastic gradient: δ = 1
S

S
∑

s=1

(
f (x(s))−ag(x(s))

)
∇θ logq(x(s)|θ).

Update θ (t+1) = (1−ρt)θ
(t)+ρtδ .

until Convergence of parameter θ

The next approach we discuss to control the variance of the approximated gradient is
what we will use later on. In this approach, the variational distribution is expressed as a
transformation of a standard random variate [19]. Let z∼ π(z) be a random variable such
that x = ψ(z,θ) has the same distribution as x∼ qθ . (For instance let z∼U [0,1] and define
ψ(z,θ) to be the inverse CDF: ψ(z,θ) = F−1

θ
(z)). We can rewrite the form of our update

20 Introduction

equation in terms of this random variate z,

∇θEqθ
[f (x)] = Eπ(z)[∇θ ψ(z,θ)∇x f (ψ(z,θ)]. (1.59)

We approximate this by Monte Carlo by first drawing z(s) ∼ π(z) and then setting x(s) =
ψ(z(s),θ) and approximating the gradient as

∇θEqθ
[f (x)]≈ 1

S

S

∑
s=1

∇θ ψ(z(s),θ)∇x f (x(s)). (1.60)

This transformation generally reduces the variance so well that only one sample is needed
[19]. Some idea as to why this reduces the variance is that on the left side of Equation 1.59
we must compute the gradient of f (x) with respect to the parameter θ that describes its
variational distribution, but on the right side we compute the gradient of f (x) directly with
respect to x.

1.5 Langevin Method

An alternate method to estimate an intractable posterior distribution is the stochastic gradient
Langevin dynamics method. Recall that π(x,D), π(x), and π(x|D) denote the joint, prior,
and posterior distributions respectively. Similar to the Metropolis-Hastings algorithm we can
construct a Markov chain to converge to the target distribution. The idea is that if we know
a density function up to a constant of proportionality we can define a “Langevin diffusion”
with the target function as the stationary distribution. We say X is a Langevin diffusion for
distribution f with “scaling” σ if it satisfies the following stochastic differential equation,

dX(t) = b(X(t))dt +σ(X(t))dB(t), X(0) ∈ Rn, (1.61)

where B(·) is an n-dimensional Brownian motion, a(x) = σ(x)σ ′(x) is an n×n symmetric
positive-definite matrix with locally uniformly Holder continuous entries, and b(x) satisfies
for each coordinate bi(x),

bi(x) =
1
2

n

∑
j=1

ai j(x)∂ log
f

∂x j
+δ

1/2(x)
n

∑
j=1

∂

∂x j

(
ai j(x)δ−1/2(x)

)
, (1.62)

where δ (x) = deta(x). Kent [16] shows that if X satisfies the above equation, and a few
non-explosion criteria, then X has f as its unique stationary distribution.

1.5 Langevin Method 21

We know the posterior distribution up to a constant since π(x|D) ∝ π(D|x)π(x), so we
use this method. Now let σ = I, f = π(x,D) and let ηt ∼N(0,εt) and consider the discretized
version of Equation 1.61,

∇xt =
εt

2
∇log(π(x|D))+ηt . (1.63)

This discrete version must be corrected by a Metropolis-Hastings algorithm. However, if we
let ε → 0 as t→ ∞ then, in the limit, this discrete version approaches Langevin dynamics
and thus π(x(|D)) is its stationary distribution. Thus for large enough t, updating xt becomes
the same as drawing it from its posterior distribution.

Welling and Teh [30] combine the idea of Langevin diffusion with stochastic gradients
to form the “stochastic gradient Langevin dynamics” method. At each time t we update the
parameters of the posterior distribution, x, by taking the step

∆xt =
εt

2

(
∇logπ(xt)+∑∇logπ(Di|xt)

)
+ηt , (1.64)

where εt decays in such a way that,

∞

∑
t=0

εt = ∞ and
∞

∑
t=0

ε
2
t < ∞. (1.65)

For smaller values of t we have the stochastic gradient method which gets us closer to the
maximum a posteriori estimate. As shown by Welling and Teh, as t→ ∞, Eq 4.1 approaches
Langevin dynamics and converges to the posterior distribution.

Chapter 2

Approximate Thompson sampling for
sequential matrix completion

The aim of this chapter is to construct a recommender system that uses the gamma process
factor model introduced in the previous chapter to estimate a partially observed matrix and
Thompson sampling to determine the next sequence of entries to observe.

In this application of the gamma process factor model, slightly differently from the
treatment in the first chapter, we treat the columns of the true matrix as parameters and we
have the observation at time t as,

Yt = tr
(
ZT

t M
)
+ εt , (2.1)

where, again, tr
(
ZT

t M
)

corresponds to some mi j entry of M. We assume the N columns of
the true matrix, denoted by m1, ...,mN ∈ RP are drawn from a multivariate normal

mn|xn ∼ N(Wxn,σ
2I), (2.2)

where xn ∼ N(0,I). We can integrate out xn to get that mn ∼ N(0,WWT +σ2I). In this
model we place a gamma prior on the entries of W and use a hierarchical gamma process to
complete the prior construction for W,

Wdk|rk,γ ∼ G(γrk,γ)

rk|γ0,c0 ∼ G(γ0/K,c0)

γ ∼ G(1,1)

γ0 ∼ G(1,1)

c0 ∼ G(1,1).

(2.3)

24 Approximate Thompson sampling for sequential matrix completion

In the case that β = 0, which is the case we test empirically in the next chapter, each entry
is only observed once. Because of this we simply treat each mi j as the noisy observation
rather than a parameter to update. To choose an entry sequentially in Thompson sampling,
we must sample the posterior distribution of the unobserved entries. Let mn be our vector

of observations such that mn =

[
mnU

mnO

]
where mnU is unobserved, and mnO is observed. The

posterior distribution can be written as,

p(mnU |m1O, ...,mNO,W,σ) = p(mnU |mnO,W,σ)p(W,σ |m1O, ...,mNO). (2.4)

The first factor on the right hand side is a normal distribution, which we sample efficiently
using a method described below. The more difficult task is sampling the posterior of W and
σ in the second factor. The sections below describe several approximate schemes to perform
this task. For now assume we are able to sample from this distribution.

To sample from p(mnU |mnO,W,σ), let Σn =WW T +σ2I, but with permuted rows and
columns so that if ΣnUU ,ΣnOO correspond to the covariance between mnU and mnO respec-
tively then,

Σn =

[
ΣnUU ΣnUO

ΣnOU ΣnOO

]
. (2.5)

Then
mnU,W,σ |mnO ∼ N(µ̄n, Σ̄n), (2.6)

where
µ̄n = ΣnUOΣ

−1
nOOmnO, (2.7)

and
Σ̄n = ΣnUU +ΣnUOΣ

−1
nOOΣnOU (2.8)

For our policy to choose entries we employ Thompson sampling. For computational effi-
ciency, rather than observing only a single entry at a time and then re-evaluating the posterior
we observe NObs at each step.

Before going into detail in both posterior estimation methods we mention that both
stochastic variational inference and stochastic gradient Langevin dynamics estimate the
posterior distribution using the log joint distribution given only the observed entries along
the way. To construct this we must modify the covariance matrix for each mn as described

25

previously and the log joint distribution is,

logp(m1O, ...,mNO,W,r,γ,γ0,c0) = ∑
n

(
− 1

2
log|Σ̄nOO|−

1
2

mT
nO(Σ̄nOO)

−1mnO)

)
+∑

d
∑
k

(
γrklog(γ)− logΓ(γrk)+(γrk−1)logWdk−Wdkγ

)
+∑

k

(
γ0

K
log(c0)− log(Γ(

γ0

K
)+(

γ0

K
−1)logrk− c0rk

)
− γ− γ0− c0.

(2.9)
On an implementation note, to sample a conditional multivariate normal efficiently we use
the trick described in [11]. To sample from N(µ̄n, Σ̄n) we sample

Z =

(
ZnU

ZnO

)
∼ N(0,WW T +σ

2I), (2.10)

and use this to set,
mnU = ZnU +Σ12Σ

−1
22 (mnO−ZnO), (2.11)

refer to [11] for a full explanation of this method.
For the more general case of β ∈ (0,1] we must reformulate the method. In this paper,

the algorithms we use do not construct confidence intervals, however it may be useful to
do so in later work. In order to construct a confidence interval, we must be able to sample
the same entry more than once. Thus, for theoretical purposes, we must have β > 0. The
logarithm of the joint distribution in this case is,

logp(Y1, ...,Yt ,M,W,σ ,εt) ∝− 1
2

t

∑
k=1

log(ε)− 1
2ε2 ∑

i, j
∑

k=(i, j)

(
Yk−mi j

)2

− N
2

log
(
|WW T +σ

2I|
)
+

N

∑
n=1

mT
n
(
|WW T +σ

2I|
)−1

mn

+∑
d

∑
k

(
γrklog(γ)− logΓ(γrk)+(γrk−1)logWdk−Wdkγ

)
+∑

k

(
γ0

K
log(c0)− log(Γ(

γ0

K
)+(

γ0

K
−1)logrk− c0rk

)
− γ− γ0− c0.

(2.12)

26 Approximate Thompson sampling for sequential matrix completion

In this case we estimate the posterior distribution for the parameters of M as well and then
for each (i, j) draw corresponding

Yk ∼ N
(
tr
(
ZT

k Y
)
,εk
)

p(Y |W,σ) p(W,σ |X1, ...,Xt) . (2.13)

2.0.1 Stochastic Variational Inference Method

In order to calculate the posterior distribution we must approximate it. We use two different
methods and compare their performance- stochastic variational inference (SVI) and stochastic
gradient Langevin dynamics (SGLD). First we discuss explicitly how we use SVI.

For the variational posterior, we can use the form of the update equation 1.49 to see that
the variational posterior should be a product of gamma distributions,

q(W,r,γ,γ0,c0)=
D

∏
d=1

K

∏
k=1

q(Wdk|adk,bdk)
K

∏
k=1

q(rk|ark ,brk)q(γ|aγ ,bγ)q(γ0|aγ0,bγ0)q(c0|ac0 ,bc0).

(2.14)
Normally we would iteratively maximize the ELBO with respect to each variational

posterior by setting each q j(x j) to the locally optimal update derived previously. However
this can only be solved analytically for c0, thus we use the stochastic gradient method for
each parameter. We will derive the update equation for c0 to demonstrate how the mean field
approximation simplifies the update,

(2.15)

logq(c0|ac0,bc0) =
∫

Wdk

∫
rk

∫
γ

∫
γ0

(
N
∑

i=1
logN(mi|0,WWT +σ2I)+

D
∑

d=1

K
∑

k=1
logG(Wdk|γrk,γ)+

K
∑

k=1
logG(rk|γ0/K,c0)+ logG(γ|1,1)+ logG(γ0|1,1)+

logG(c0|1,1)
)

D
∏

d=1

K
∏

k=1
q(Wdk|adk,bdk)

K
∏

k=1
q(rk|ark ,brk)q(γ|aγ ,bγ)q(γ0|aγ0,bγ0).

Because the mean field assumption makes the posterior a product of independent distributions
this simplifies to[K

∑
k=1

∫
rk

∫
γ0

logG(rk|γ0/K,c0)q(rk|ark ,brk)q(γ0|aγ0,bγ0)

]
+ logG(c0|1,1)+ const. (2.16)

Working this out one finds that indeed the variational posterior is a gamma distribution with
parameter updates

a(t+1)
c0 =

Γ(a(t)γ0 +1)

Γ(a(t)γ0)b
(t)
γ0

+1, (2.17)

27

and

b(t)c0 =
K

∑
k=1

Γ(a(t)rk +1)

Γ(a(t)rk)b
(t)
rk

. (2.18)

For the other parameters, we cannot solve the update analytically because it amounts to
integrating over the gamma function. Thus we use the stochastic gradient method where, for
computational ease, we use the very similar log-normal distribution rather than the gamma
distribution. To be clear, the variational posterior construction is,

logWdk ∼ N(µWdk ,σ
2
Wdk

), (2.19)

logrk ∼ N(µrk ,σ
2
rk
), (2.20)

logγ ∼ N(µγ ,σ
2
γ), (2.21)

logγ0 ∼ N(µγ0,σ
2
γ0
), (2.22)

logc0 ∼ N(µγ ,σ
2
c0
). (2.23)

The ELBO is Eq(logp(x,D))+H(q), where q represents the product of variational posterior
gamma distributions and H(q) is the entropy. The log joint is given in the previous section
and the entropy is,

H(q) ∝

(
∑
d

∑
k

logσWdkexp(µWdk +1/2)
)
+

(
∑
k

logσrkexp(µrk +1/2)
)

(2.24)

+ logσγexp(µγ +1/2)+ logσγ0exp(µγ0 +1/2)+ logσc0exp(µc0 +1/2). (2.25)

Algorithm 4 Stochastic Variational Inference for Gamma Process Factor Analysis
repeat

For each parameter W1−DK , r1−K , γ , γ0, (c0), sample a separate zd ∼ N(0,1).

Set each parameter to log-normal: logWdk = µWdk + zWdkσ
1
2

Wdk
, log rk = µrk + zrkσ

1
2

rk ,
etc.

Set gW = ∇W f , gr = ∇r f , gg =
∂

∂g f , gg0
= ∂

∂g0
f ,
(
gc0

= ∂

∂c0
f
)
.

Using chain rule compute gµW
ELBO, gσW

ELBO, etc.
Compute step size ∆ using AdaDelta.
Update µW ← µW +∆µW gµW

ELBO, repeat for µr,µγ , µγ0 , µc0 .
Update σW ← σW +∆σW gσW

ELBO, repeat for σr,σγ , σγ0 , σc0

until convergence

28 Approximate Thompson sampling for sequential matrix completion

We express the variational distribution as a transformation of a standard random variate
to control the variance of the gradient as discussed in Section 1.4.2. That is we use that,

∇θEqθ
[f (x)] = Eπ(z)[∇θ ψ(z,θ)∇x f (ψ(z,θ)]. (2.26)

Here we let ψ(z,{µ,σ}) = exp(µ +σ1/2z) and z∼ N(0,1).
Given the updated variational parameters µdk, and σdk we can approximate p(W,σ |m1O, ...,mNO)

by drawing the model parameters from their variational posterior. For instance, for Wdk we
draw,

zdk ∼ N(0,1), (2.27)

and then set
Wdk = µWdk + zdkσ

1
2

Wdk
. (2.28)

The choice of step size for the variational parameter updates is critical to the runtime of
the algorithm. Here, we use the AdaDelta Method to ensure fast convergence that is mostly
unaffected by the initial choice of parameters. The idea behind AdaDelta is to take a step size
proportional to the ratio of the previous w−1 step sizes to the previous w gradients. This
helps to ensure that the parameters do not oscillate about the optimum because the gradients
are so large that the optimum is overshot. It also helps ensure that the algorithm does not
search too slowly in a region where the gradient is small. The AdaDelta method removes
the need to artificially construct a step size schedule and is insensitive to large gradients and
noise [31].

2.0.2 Stochastic Gradient Langevin Dynamics Method

Let x = (W11, ...,WDK,r1, ...,rK,σ ,σ0,c0). We update our model parameters as described in
Eq. 4.1,

∆xt =
εt

2

(
∇logπ(xt)+∑∇logπ(m1O, ...,mNO|xt)

)
+ηt , (2.29)

where ηt ∼ N(0,εt), εt decays as t−1/3, and log(π(xt)) and logπ(Di|xt) are computed using
Eq. 2.9. As is discussed in the previous chapter, for t big enough, updating the parameters
is the same as drawing from the posterior distribution. Thus by updating σ and W we can
sample from

p(W,σ |m1O, ...,mNO) (2.30)

Since each entry of x must be nonnegative we do the following transformation to avoid a con-
strained optimisation. Let u denote our unconstrained variable and define the transformation

29

Algorithm 5 Marsden and Bacallado Algorithm with SVI Posterior Estimation
1: Initialize N, P, some upper bound on the rank, K, some upper bound on the variance, σ ,

and the discount factor β ∈ [0,1].
2: Sample K(N +D−K) entries uniformly with replacement
3: repeat
4: Construct the ELBO using only the observed entries, i.e. from Eq. 2.9 and Eq. 2.24
5: Approximate the variance of WW T +σ2I from the yet-to-be-updated variational

posterior using MCMC to determine number of steps for Variational Inference, Nsteps
and number of observations to be made, NObs.

6: for i=1, ..., Nsteps do
7: Update ELBO and variational parameters
8: end for
9: for n=1, ..., N do

10: Compute p(mnU |mnO,W,σ)
11: end for
12: for i=1, ..., Nobs do
13: For each n, draw mn ∼ p(mnU |mnO,W,σ)p(W,σ |m1O, ...,mNO)
14: Incorporate discount factor for each entry: mnk← mnkβ

Nmnk , where Nmnk is the
number of times entry (n,k) has been observed

15: Observe the entry with largest corresponding reward
16: end for
17: until Matrix can be solved with convex optimisation method

T as,
x = T (u) = log(1+ eu). (2.31)

We update our unconstrained variable u by computing

∆ut =

(
εt

2

(
∇xlogπ(T (ut))+∑∇xlogπ(Di|T (ut))

))
T ′(ut) (2.32)

We update the unconstrained variable by taking step ut+1 = ut +∆ut and then set xt+1 =

T (ut+1)+ |ηt |.
Note that in practice we now add the absolute value of the noise after applying the

transformation to our unconstrained variable. Furthermore, from [21], it seems that, in
practice, it is better to let t be fixed rather than decay. With a decaying t a Metropolis-
Hastings step to correct for discretization becomes unnecessary, however with a fixed t we
would technically need to do this and we instead omit it. Finally, we add noise with variance
to match the scale of the data so that it doesn’t dominate the noise in the model, but also so
that it is not so small it is completely negligible.

30 Approximate Thompson sampling for sequential matrix completion

Algorithm 6 Marsden and Bacallado Algorithm with SGLD Posterior Sampling
1: Initialize N, P, some upper bound on the rank, K, some upper bound on the variance, σ ,

and the discount factor β ∈ [0,1].
2: Sample K(N +D−K) entries uniformly with replacement
3: repeat
4: Compute logp(m1O, ...,mNO,W,r,γ,γ0,c0,σ) from Eq. 2.9
5: for i=1, ..., Nsteps do
6: For each model parameter:W,r,γ,γ0,c0,σ compute the corresponding uncon-

strained update from Eq. 2.32
7: Set Wt+1 = T (uWt+1)+ |ηWt |, rt+1 = T (urt+1)+ |ηrt |, etc.
8: end for
9: for i=1, ..., Nobs do

10: For each n, draw mn ∼ p(mnU |mnO,W,σ)p(W,σ |m1O, ...,mNO)
11: Incorporate discount factor for each entry: mnk← mnkβ

Nmnk , where Nmnk is the
number of times entry (n,k) has been observed

12: Observe the entry with largest corresponding reward
13: end for
14: until Matrix can be solved with convex optimisation method

2.0.3 Singular Value Thresholding Method

Algorithm 7 SVT Comparison Method
1: Initialize N, P, some upper bound on the rank, K, some upper bound on the variance, σ ,

and the discount factor β ∈ [0,1].
2: Sample K(N +D−K) entries uniformly with replacement
3: repeat
4: Compute estimate M̂ of the true matrix M using nuclear norm minimisation
5: Incorporate discount factor for each entry: mnk ← mnkβ

Nmnk , where Nmnk is the
number of times entry (n,k) has been observed

6: Observe the entry with largest corresponding reward
7: until Matrix can be solved with convex optimisation method

As a baseline comparison we use a singular value thresholding method. At each step we
simply use our set of observed entries to construct an estimate of the true matrix using nuclear
norm minimisation as explained in the introduction. Given this estimation we greedily pick
the NObs largest predicted entries. The idea is that exploration is achieved in the beginning
when the estimate has a large amount of error, and exploitation is achieved as soon as the
estimation becomes more accurate.

Chapter 3

Results

For the Thompson sampling simulations we use Theano [2] in conjunction with Lasagne, a
small library build to train neural networks in Theano, to compute and update the parameters
and hyperparameters of our model. We run our code on an NVIDIA Tesla K20 graphic card.
Below is a profile of the runtime using a CPU and using a GPU, showing the benefits of
using a GPU. For the singular value thresholding comparison method we use the MATLAB
software written by Emmanuel Candés and Stephen Becker [6].

Matrix size: N # N/10
0 200 400 600 800 1000

Ti
m

e
(s

)

#104

0

1

2

3

4
GPU
CPU

Figure 3.1 Runtime speed-up of the SVI Thompson sampling algorithm using the NVIDIA
Tesla K20 graphics card.

3.1 Posterior Estimation Tests

We first test that both SVI and SGLD are able to effectively estimate the posterior distribution
when given the full data matrix M without any missing entries. To see the ability of each

32 Results

algorithm to adapt to different true ranks of the covariance matrix we test a 100×100 matrix
with true ranks 1,30,100 and user-defined rank threshold K = 30.

0 20 40 60

Ei
ge
nv
al
ue

#104

0

1

2

3
Rank 1 SGLD

0 20 40 60

Ei
ge
nv
al
ue

#104

0

1

2

3
Rank 1 SVI

10 20 30 40 50 60

Ei
ge
nv
al
ue

#104

0

1

2

3
Rank 30 SGLD

0 20 40 60

Ei
ge
nv
al
ue

#104

0

1

2

3
Rank 30 SVI

0 20 40 60

Ei
ge
nv
al
ue

#104

0

1

2

3
Rank 100 SGLD

0 20 40 60

Ei
ge
nv
al
ue

#104

0

1

2

3
Rank 100 SVI

Figure 3.2 Plot of the eigenvalues of the estimated covariance matrix. Left: SGLD Method.
Right: SVI Method.

We give the algorithm the full data set and let it update the model parameters as defined
in the SGLD pseudocode and SVI pseudocode. We plot the eigenvalues of the estimated
covariance matrix for each rank and each method. For the SGLD we see a clear response
to the true rank of the data. For the SVI method we also see a response to the true rank of
the data since the eigenvalues decay much faster for the rank 1 matrix, however not quite as
obvious as that for SGLD. Below we plot the convergence of the log-likelihood when the
parameters are updating with SVI with different true ranks. We see that convergence occurs
only a few steps into the algorithm, which is generally not the case. This might suggest that
the SVI parameters are quickly trapped in a local minimum or possibly that the mean-field
approximation makes the centre of the variational posterior very inaccurate.

3.2 Bandit Results with Synthetic Data 33

0 100 200

#105

-3

-2

-1

0

0 100 200

#107

-4

-3

-2

-1

0

0 100 200

#106

-15

-10

-5

0

Figure 3.3 Evolution of log-likelihood as parameters are updated with SVI. Left: True Rank
1, Middle: True Rank 30, Right: True Rank 100

3.2 Bandit Results with Synthetic Data

To test the performance of each algorithm we construct a D×K factor matrix W , for ranks
K = 1,5,10,15,20, and D = 100. We draw N = 1000 columns from a multivariate normal
with covariance matrix WW T + 0.1I. Due to slow computation time we are only able to
average each algorithm over 5 different runs. We measure the “regret” in that we construct
the optimal sequence of actions knowing the full true matrix and subtract the cumulative
reward from the cumulative reward achieved by the policy of each algorithm. For these
Bayesian methods we set the user-defined threshold rank to be K̄ = 20. In the analysis we
also include the “Oracle” results where the true covariance matrix is known and at each step
the entries are chosen by drawing from the conditional multivariate normal given the set of
observations. Every test run considers the horizon H = K̄(N +D− K̄). This is the number
of degrees of freedom for a matrix with rank K̄. In general most methods can complete an
N×D matrix of rank K̄ within a factor of this horizon [7]. For the SVI and SVT algorithms
we either update the posterior distribution or perform singular value thresholding 20 times
and observe NObs = ⌊H/20⌋ entries before updating again. For the SGLD algorithm we
iterate 200 times since drawing from the posterior requires the stochastic gradient iteration.

34 Results

Number of Entries Observed #104
0 0.5 1 1.5 2 2.5

Cu
m

ul
at

iv
e

Re
gr

et

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000
Rank 1 Matrix Regret

Thompson Sampling (SGLD)
Singular Value Threshold Method
Thompson Sampling (SVI)
Random
Oracle

Figure 3.4

Number of Entries Observed #104
0 0.5 1 1.5 2 2.5

Cu
m

ul
at

iv
e

Re
gr

et

#104

0

0.5

1

1.5

2

2.5

3

3.5

4
Rank 5 Matrix Regret

Thompson Sampling (SGLD)
Singular Value Threshold Method
Thompson Sampling (SVI)
Random
Oracle

Figure 3.5

3.2 Bandit Results with Synthetic Data 35

Number of Entries Observed #104
0 0.5 1 1.5 2 2.5

Cu
m

ul
at

iv
e

Re
gr

et

#104

0

1

2

3

4

5

6
Rank 10 Matrix Regret

Thompson Sampling (SGLD)
Singular Value Threshold Method
Thompson Sampling (SVI)
Random
Oracle

Figure 3.6

Number of Entries Observed #104
0 0.5 1 1.5 2 2.5

Cu
m

ul
at

iv
e

Re
gr

et

#104

0

1

2

3

4

5

6

7
Rank 15 Matrix Regret

Thompson Sampling (SGLD)
Singular Value Threshold Method
Thompson Sampling (SVI)
Random
Oracle

Figure 3.7

36 Results

Number of Entries Observed #104
0 0.5 1 1.5 2 2.5

Cu
m

ul
at

iv
e

Re
gr

et
#104

0

1

2

3

4

5

6

7

8
Rank 20 Matrix Regret

Thompson Sampling (SGLD)
Singular Value Threshold Method
Thompson Sampling (SVI)
Random
Oracle

Figure 3.8

When the rank is low we see that the Thompson sampling methods have faster growing
regret than the singular value thresholding method. The regret of the singular value thresh-
olding method increases at nearly the same rate as the Thompson sampling methods, but
quite soon levels off. This indicates that the method is able to complete the entire matrix
with good accuracy. However the next plots show that as the true rank of the data grows, the
Thompson sampling methods begin to outperform SVT. The transition from increasing regret
to leveled regret is sharper for the SGLD method than the SVI method.

To analyse the exploration of each method we show a sequence of heatplots in which
each sequential frame shows the next 500 observations. To see if there is an effect of the true
rank of the data on the exploration we show the plots for rank 1, however the behavior is
generally the same for ranks 5, 10, 15, and 20.

3.2 Bandit Results with Synthetic Data 37

200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100

200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100

200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100

Figure 3.9 Sequence of observations with Oracle policy. True Rank: 1.

200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100

200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100

200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100

Figure 3.10 Sequence of observations with SGLD Thompson sampling policy. True Rank: 1.

38 Results

200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100

200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100

200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100

Figure 3.11 Sequence of observations with SVI Thompson sampling policy. True Rank: 1.

200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100

200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100

200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100
200 400 600 800 1000

20

40

60

80

100

Figure 3.12 Sequence of observations with SVT policy. True Rank: 1.

One obvious observation is the tendency towards exploitation rather than exploration
on part of the Thompson sampling algorithms, and in particular the SGLD algorithm. Both

3.3 Bandit Results with MovieLens Data 39

methods seem to observe entries in a highly non-random fashion, even towards the very
beginning when the posterior distributions should not be too concentrated. While the regret
of the methods changes in response to increasing rank, the exploration pattern of the methods
seems to be unaffected.

3.3 Bandit Results with MovieLens Data

We test the algorithms on a 1000×100 matrix from the MovieLens dataset [1]. To complete
the missing entries initially we use OptSpace [18], an algorithm known to perform well on
the MovieLens data set [17]. Thus we ultimately use a modified version of the MovieLens
data so that we can compute the regret of each algorithm. Again, we only consider the
horizon K(N +D−K), where N = 1000, D = 100, and we let K = 20.

Number of Entries Observed #104
0 0.5 1 1.5 2 2.5

Cu
m

ul
at

iv
e

Re
gr

et

0

1000

2000

3000

4000

5000

6000

7000
MovieLens Regret

Thompson Sampling (SGLD)
Singular Value Threshold Method
Thompson Sampling (SVI)

Figure 3.13 Cumulated Regret with the MovieLens data set.

The data shows that the Thompson sampling methods outperform the singular value
thresholding method for this data set. The performance is particularly good when the
posterior distribution is updated using stochastic variational inference. Also note that within
this small horizon the regret of the Thompson sampling methods begins to decrease whereas
the singular value thresholding method stays level. This may indicate that even after SVT

40 Results

has levelled off, the Bayesian methods have a more accurate estimate of the true matrix since
they are able to account for the large entries not previously chosen.

Chapter 4

Conclusion

This chapter consists of two parts. The first is a discussion of the results and suggestions for
future research. The second is a more rigorous proposal for a new bandit policy.

4.1 Discussion of Results

Both the synthetic data results and the MovieLens results show superior performance of the
Thompson sampling algorithms, particularly the SVI algorithm, for larger rank data. The
poor performance of the Thompson sampling algorithms in the rank 1 and rank 5 case may be
due to the fact that the rank threshold value is too large compared to the true rank. However,
from the initial rank thresholding tests it seems that both the SGLD and SVI algorithms are
able to adapt to small ranks. Thus we see conflicting behavior. In the matrix completion
setting with a full data set these methods have shown to be independent of the user-defined
rank threshold value. However, in the sequential matrix completion setting this does not
seem to be the case. It is possible that in the sequential matrix completion case it requires
more observations to be able to deviate further from the user-defined rank threshold value. In
future research, further testing of this behavior is necessary.

The heatmaps show interesting behavior on the part of the Thompson sampling algo-
rithms. We see that the variance of the model parameters is too low to allow for efficient
exploration. This is particularly obvious with the SGLD method. While SGLD is effective in
reconstructing the true matrix, it is unable to accurately quantify the uncertainty. The reason
for this most likely lies in the way the algorithm was modified to make it faster. Recall that
in the stochastic gradient Langevin method, at each time t we update the parameters of the

42 Conclusion

posterior distribution, x, by taking the step

∆xt =
εt

2

(
∇logπ(xt)+∑∇logπ(Di|xt)

)
+ηt , (4.1)

where ηt ∼ N(0,εt) and εt decays in such a way that,

∞

∑
t=0

εt = ∞ and
∞

∑
t=0

ε
2
t < ∞.

For smaller values of t we have the stochastic gradient method which updates the parameters
closer to the maximum a posteriori estimate. Welling and Teh show that Eq 4.1 converges to
the posterior distribution as t→ ∞. However, in the case of sequential matrix completion we
have an iterative process where at each step we must re-estimate the posterior distribution
given the new observations. In order to make the algorithm not too slow we cannot explore
the behavior for very large t. Thus we are able to update the parameters close to the MAP
estimate, which explains why the regret of the SGLD method is low. However, we are not yet
able to fully converge to the true posterior distribution, which may explain why the algorithm
is not an efficient explorer.

The reason that the SVI algorithm does not exhibit much exploration may lie in the
technicalities of the parameter updates. When the gradients are very large, in order to stay
in the computable regime, the gradients must be scaled. For the SVI algorithm we used the
well-tested and easily computed AdaDelta method [31]. The idea behind AdaDelta is to take
a step size proportional to the ratio of the previous s step sizes to the previous s+1 gradients,
for some s. This avoids two common pitfalls. The first is oscillating about the optimum
because the gradients are so large that the optimum is overshot. The second is searching
slowly in a region where the gradient is small. The AdaDelta method removes the need to
artificially construct a step size schedule and is insensitive to large gradients and noise [31].
However, the scaling of the AdaDelta gradients essentially ensures that the gradients, and
thus the parameter updates, stay on the same scale and within a reasonable range. Perhaps
the variational parameters that describe the variance of the posterior distribution are kept
within too small a range from the AdaDelta method. Again, research into this behavior is
necessary in the future.

4.2 A new proposal

The primitive singular value thresholding algorithm had impressive performance for the rank
1 and 5 cases. Furthermore it was much faster than the Thompson sampling algorithms

4.2 A new proposal 43

and did not require to be run on a GPU. This makes it an appealing method to use in the
future. However, nowhere does the SVT algorithm make use of the fact that the columns are
drawn from a multivariate normal with a low rank covariance matrix. This leads to the idea
of using an Empirical Bayes approach. That is, perhaps it is more efficient to use SVT to
complete the empirical covariance matrix and then using this low rank approximation for
the true covariance matrix, draw the unobserved entries given the observed entries from the
conditional multivariate. This uses the power of singular value thresholding and incorporates
the knowledge of the model. This method can be cast as a modified matrix Lasso estimator.
For a full set of observations, the estimator would be

Σ̂LASSO = argmin
S∈SD

+

||Σ̄−S||22+λ ||S||∗

where SD
+ denotes the set of DxD symmetric positive-semidefinite matrices, Σ̄ denotes the

empirical covariance matrix, and ||·||∗ again denotes the nuclear norm. In the case of
only partial observations we construct one of two possible empirical “covariance matrices”.
Let (z)i j be a mask matrix where zi j ∼ Bernoulli(δi j). If δi j is constant for all entries, i.e.
∀i, j, δi j = δ then we can construct the empirical covariance matrix

Σ
′
δ
=

1
N

N

∑
n=1

yn⊗ yn.

However if we choose to sample the covariance matrix in a specific manner it may not be the
case that δi j is constant. In this scenario we cannot simply divide each entry in the empirical
covariance matrix by N since it is possible that some entries are observed much more often
than others. Here we let

fi j =

1, if ∀n ∈ N,yniyn j = 0

si j, else
(
where si j =

∣∣{n|yniyn j ̸= 0
}∣∣).

Then we construct the empirical covariance matrix

Σ
′ =

1
f
.∗

N

∑
n=1

yn⊗ yn,

where .∗ is meant to denote element-wise multiplication. We assume for now that the entries
are indeed chosen randomly within our data matrix Y so that the first empirical covariance
matrix estimator is legitimate. Following the work of [20] we construct a new formulation of

44 Conclusion

the matrix Lasso with only partial observations. It is an easy calculation to see that

E
(
Σ
′
δ

)
= (δ −δ

2)diag(Σ)+δ
2
Σ,

where Σ simply represents the true covariance matrix. To construct an unbiased estimator of
the empirical covariance matrix we take

Σ̃δ = (δ−1−δ
−2)diag

(
Σ
′
δ

)
+δ

−2
Σ
′
δ
.

To see that this is an unbiased estimator note that,

Σ = δ
−2

Σ
′
δ
+(δ−1−δ

−2)diag
(
Σ
′
δ

)
.

Thus the modified matrix Lasso estimator we define to be the following

Σ̂LASSO−PART IAL = argmin
S∈SD

+

||Σ̃δ −S||22 +λ ||S||∗. (4.2)

Lounici [20] shows that this estimator is minimax optimal up to a logarithmic factor.
Interestingly, this estimator has a Bayesian interpretation as a maximum a posteriori (MAP)
estimate under the following prior,

yn ∼ N(0,WWT +σ
2I),

Wdk ∼ N(0,1/
√

2λ),
(4.3)

where we treat λ and σ as fixed. In the case of the full data set, i.e. no partial observations,
we have the log joint as

logp(y1, ...,yN ,W,r,γ,γ0,c0) =

(
− N

2
log|S|−1

2

N

∑
n=1

yT
n S−1yn

)
− λ

2
||W ||22,

where S =WW T +σ2I. Aside from calculating the full posterior distribution, if we want
to find the maximum a posteriori we can simply maximize the log joint since it is proportional
to the posterior distribution. So the maximum a posteriori estimator, Σ̂MAP, satisfies,

Σ̂MAP = argmax
S=WW T+σ2I

− N
2

log|S|−1
2

N

∑
n=1

yT
n S−1yn−

λ

2
||W ||22. (4.4)

.

4.2 A new proposal 45

The relationship between this maximum a posteriori estimator and the matrix Lasso
estimator follows from two facts. The first is that that the empirical covariance matrix Σ̄

satisfies,

Σ̄ = argmax
S∈SD

+

(
− N

2
log|S|−1

2

N

∑
n=1

yT
n S−1yn

)
.

And so we have,

argmax
S∈SD

+

(
− N

2
log|S|−1

2

N

∑
n=1

yT
n S−1yn

)
= argmin

S∈SD
+

||S− Σ̄||22.

The second fact, as shown in [26], is that if X can be decomposed as UV T , then

||X ||∗ = min
UV T=X

||U ||2||V ||2,

thus if we restrict S = WW T , then ||W ||22 = ||S||∗. We use these two facts to recast our
maximum a posteriori estimator as

Σ̂MAP = argmin
S∈SD

+

||S− Σ̄||22−λ ||S||∗ = Σ̂LASSO (4.5)

Now in the case of partial data, this equality is no longer necessarily true. Using the
notation from the methods section, the logarithm of the joint distribution is

logp(y1O, ...,yNO,W,r,γ,γ0,c0) = ∑
n

(
− 1

2
log|Σ̄nOO|−

1
2

yT
nO(Σ̄nOO)

−1ynO)

)
+

1
2

log(λ)−λ ||W ||22.

Thus the MAP estimate in the setting of partial data satisfies

Σ̂MAP−PART IAL = argmax
S=WW T+σ2I

− N
2

log|SnOO|−
1
2

N

∑
n=1

yT
n S−1

nOOyn−
λ

2
||S||∗.

Whereas, again, the modified matrix LASSO estimator is

Σ̂LASSO−PART IAL = argmin
S∈SD

+

||Σ̃δ −S||22 +λ ||S||∗.

46 Conclusion

The relationship between these two estimators has not yet been studied. Future work
might consider studying the relationship between these two estimators and a comparison of
simulations of their corresponding regret when used in the recommender system problem.

Bibliography

[1] Movielens. http://grouplens.org/datasets/movielens/. Accessed: 2016-08-01.

[2] Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., Ballas, N.,
Bastien, F., Bayer, J., Belikov, A., Belopolsky, A., Bengio, Y., Bergeron, A., Bergstra, J.,
Bisson, V., Bleecher Snyder, J., Bouchard, N., Boulanger-Lewandowski, N., Bouthillier,
X., de Brébisson, A., Breuleux, O., Carrier, P.-L., Cho, K., Chorowski, J., Christiano,
P., Cooijmans, T., Côté, M.-A., Côté, M., Courville, A., Dauphin, Y. N., Delalleau, O.,
Demouth, J., Desjardins, G., Dieleman, S., Dinh, L., Ducoffe, M., Dumoulin, V., Ebrahimi
Kahou, S., Erhan, D., Fan, Z., Firat, O., Germain, M., Glorot, X., Goodfellow, I., Graham,
M., Gulcehre, C., Hamel, P., Harlouchet, I., Heng, J.-P., Hidasi, B., Honari, S., Jain, A.,
Jean, S., Jia, K., Korobov, M., Kulkarni, V., Lamb, A., Lamblin, P., Larsen, E., Laurent,
C., Lee, S., Lefrancois, S., Lemieux, S., Léonard, N., Lin, Z., Livezey, J. A., Lorenz,
C., Lowin, J., Ma, Q., Manzagol, P.-A., Mastropietro, O., McGibbon, R. T., Memisevic,
R., van Merriënboer, B., Michalski, V., Mirza, M., Orlandi, A., Pal, C., Pascanu, R.,
Pezeshki, M., Raffel, C., Renshaw, D., Rocklin, M., Romero, A., Roth, M., Sadowski, P.,
Salvatier, J., Savard, F., Schlüter, J., Schulman, J., Schwartz, G., Serban, I. V., Serdyuk, D.,
Shabanian, S., Simon, E., Spieckermann, S., Subramanyam, S. R., Sygnowski, J., Tanguay,
J., van Tulder, G., Turian, J., Urban, S., Vincent, P., Visin, F., de Vries, H., Warde-Farley,
D., Webb, D. J., Willson, M., Xu, K., Xue, L., Yao, L., Zhang, S., and Zhang, Y. (2016).
Theano: A Python framework for fast computation of mathematical expressions. arXiv
e-prints, abs/1605.02688.

[3] Bhattacharya, A. and Dunson, D. B. (2011). Sparse bayesian infinite factor models.
Biometrika, 98(2):291–306.

[4] Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2016). Variational inference: A review
for statisticians. arXiv preprint arXiv:1601.00670.

[5] Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. arXiv preprint arXiv:1204.5721.

[6] Cai, J.-F., Candès, E. J., and Shen, Z. (2010). A singular value thresholding algorithm
for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982.

[7] Candes, E. J. and Plan, Y. (2010). Matrix completion with noise. Proceedings of the
IEEE, 98(6):925–936.

[8] Candès, E. J. and Recht, B. (2009a). Exact matrix completion via convex optimization.
Foundations of Computational mathematics, 9(6):717–772.

http://grouplens.org/datasets/movielens/

48 Bibliography

[9] Candès, E. J. and Recht, B. (2009b). Exact matrix completion via convex optimization.
Foundations of Computational mathematics, 9(6):717–772.

[10] Candès, E. J. and Tao, T. (2010). The power of convex relaxation: Near-optimal matrix
completion. IEEE Transactions on Information Theory, 56(5):2053–2080.

[11] Doucet, A. (2010). A note on efficient conditional simulation of gaussian distributions.
Departments of Computer Science and Statistics, University of British Columbia.

[12] Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2014). Bayesian Data Analysis,
volume 2. Taylor & Francis.

[13] Gershman, S. J. and Blei, D. M. (2012). A tutorial on bayesian nonparametric models.
Journal of Mathematical Psychology, 56(1):1–12.

[14] Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013). Stochastic variational
inference. The Journal of Machine Learning Research, 14(1):1303–1347.

[15] Kaufmann, E., Cappé, O., and Garivier, A. (2012). On bayesian upper confidence
bounds for bandit problems. In AISTATS, pages 592–600.

[16] Kent, J. (1978). Time-reversible diffusions. Advances in Applied Probability, pages
819–835.

[17] Keshavan, R. H., Montanari, A., and Oh, S. (2009a). Low-rank matrix completion
with noisy observations: a quantitative comparison. In Communication, Control, and
Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on, pages 1216–1222.
IEEE.

[18] Keshavan, R. H., Oh, S., and Montanari, A. (2009b). Matrix completion from a few
entries. In 2009 IEEE International Symposium on Information Theory, pages 324–328.
IEEE.

[19] Knowles, D. A. (2015). Stochastic gradient variational bayes for gamma approximating
distributions. arXiv preprint arXiv:1509.01631.

[20] Lounici, K. et al. (2014). High-dimensional covariance matrix estimation with missing
observations. Bernoulli, 20(3):1029–1058.

[21] Mattingly, J. C., Stuart, A. M., and Higham, D. J. (2002). Ergodicity for sdes and
approximations: locally lipschitz vector fields and degenerate noise. Stochastic processes
and their applications, 101(2):185–232.

[22] Paisley, J., Blei, D., and Jordan, M. (2012). Variational bayesian inference with
stochastic search. arXiv preprint arXiv:1206.6430.

[23] Recht, B. (2011). A simpler approach to matrix completion. Journal of Machine
Learning Research, 12(Dec):3413–3430.

[24] Robbins, H. and Monro, S. (1951). A stochastic approximation method. The annals of
mathematical statistics, pages 400–407.

Bibliography 49

[25] Russo, D. and Van Roy, B. (2014). Learning to optimize via posterior sampling.
Mathematics of Operations Research, 39(4):1221–1243.

[26] Srebro, N., Rennie, J., and Jaakkola, T. S. (2004). Maximum-margin matrix factoriza-
tion. In Advances in neural information processing systems, pages 1329–1336.

[27] Teh, Y. W., Görür, D., and Ghahramani, Z. (2007). Stick-breaking construction for the
indian buffet process. In International Conference on Artificial Intelligence and Statistics,
pages 556–563.

[28] Thibaux, R. and Jordan, M. I. (2007). Hierarchical beta processes and the indian
buffet process. In International conference on artificial intelligence and statistics, pages
564–571.

[29] Weber, R. et al. (1992). On the gittins index for multiarmed bandits. The Annals of
Applied Probability, 2(4):1024–1033.

[30] Welling, M. and Teh, Y. W. (2011). Bayesian learning via stochastic gradient langevin
dynamics. In Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 681–688.

[31] Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

[32] Zhou, M., Wang, C., Chen, M., Paisley, J., Dunson, D., and Carin, L. (2010). Nonpara-
metric bayesian matrix completion. Proc. IEEE SAM, 2:12.

Appendix A

Proof of the analytical expression for the
optimal ELBO update

A.1 The KL Divergence is nonnegative

We use Jensen’s inequality and the fact that logarithm is concave:

−KL(f ||g) = E f [log
g(x)
f (x)

]

≤ logE f [
g(x)
f (x)

]

= log
∫

χ

g(x)dx = 0

And note that the integral is zero if log p(x)
q(x) = 0 almost everywhere, which is equivalent to

f = g almost everywhere.

52 Proof of the analytical expression for the optimal ELBO update

A.2 The Mean Field Method Update Equation

L(q) =
∫

χ
∏qi(xi)

[
logp(x,D)−∑

k
logqk(xk)

]
dx

=
∫

χ j

q j(x j)
∫

χ− j
∏
i̸= j

qi(xi)
[
logp(x,D)−∑

k
logqk(xk)

]
dx

=
∫

χ j

q j(x j)
∫

χ− j
∏
i̸= j

qi(xi)logp(x,D)dx

−
∫

χ j

q j(x j)
∫

χ− j
∏
i ̸= j

qi(xi)
[
∑
k ̸= j

logqk(xk)+ logq j(x j)
]
dx

=
∫

χ j

q j(x j)Eq− j

[
logp(x,D)

]
−
∫

χ j

q j(x j)logq j(x j)

[∫
χ− j

∏
i ̸= j

qi(xi)

]
dx

−∑
k ̸= j

∫
χ j

q j(x j)
∫

χ− j
∏
i ̸= j

qi(xi)logqk(xk)

=
∫

χ j

q j(x j)Eq− j

[
logp(x,D)

]
−
∫

χ j

q j(x j)logq j(x j)dx−∑
k ̸= j

∫
χ− j

∏
i ̸= j

qi(xi)logqk(xk),

where the last equality holds because
∫

χ− j ∏
i̸= j

qi(xi) = 1 and
∫

χ j
q j(x j) = 1, since each qi(xi)

is a probability density on its own, and any combination of them is a probability density.
Then looking at the ELBO in terms of just q j(x j) we have that,

L(q) =
∫

χ j

q j(x j)Eq− j

[
logp(x,D)

]
−
∫

χ j

q j(x j)logq j(x j)dx−∑
k ̸= j

∫
χ− j

∏
i ̸= j

qi(xi)logqk(xk)

=
∫

χ j

q j(x j)Eq− j

[
logp(x,D)

]
−
∫

χ j

q j(x j)logq j(x j)dx+ const

=
∫

χ j

q j(x j)log
1
Z j

exp
(
Eq− j

[
logp(x,D)

])
q j(x j)

dx+ const

=KL
(

q j||
1
Z j

exp
(
Eq− j

[
logp(x,D)

]))
+ const.

Using the fact that the KL-divergence is nonnegative, the best we can do is when

KL
(

q j|| 1
Z j

exp
(
Eq− j

[
logp(x,D)

]))
= 0 which occurs only when

q j =
1
Z j

exp
(
Eq− j

[
logp(x,D)

])
.

Thus, this is the form for our update equation.

Appendix B

Frobenius Normed-Error of Estimator
Bounds Regret

(Need to reread all of this- don’t waste time editing it yet). We show an inherent connection
between the frobenius-norm error of the matrix estimation and the pseudo-regret. Recall the
notation. The reward for taking action Z at step t is

rt,Z = (Tr(ZT X)+ εt)β
Tt,Z ,

where (εt)t≥1 is a sequence of independent noise variables with mean 0 and variance σ2.
The variable Tt,Z counts the number of times that action Z has been chosen before time t, and
the parameter β ∈ [0,1] determines a geometric discounting due to observing the same entry
of the matrix repeatedly. We introduce the shorthand: Tr(ZT X) as XZ . At each step t, the
experimenter observes the reward rt,At for the action chosen, At .

The pseudo-regret for finite-horizon M is,

RM(A) = sup
Z1,...,ZM

E
(M

∑
t=1

rt,Zt

)
−E

(M

∑
t=1

rt,At

)
.

We will refer to the sequence of Zt’s above as the “optimal policy” and the sequence of
At’s as the “estimator policy”.

In the notation above we use Z to denote an action chosen by the optimal policy and
A to denote the action chosen by the estimator policy. These actions refer to some (i, j)th

entry of the matrix and it can certainly be the case that Zt = At ′ for some t,t ′. As a warning-
we will have the case that Zt = Zt ′ since the same action can be chosen more than once. To
distinguish between the number of times the optimal policy chooses action Zt ′ before time t
and the number of times it is chosen by the estimator policy we let Tt,Zt′ be the number of

54 Frobenius Normed-Error of Estimator Bounds Regret

times action Zt ′ is chosen before time t by the optimal policy and we let St,Zt′ be the number
of times action Zt ′ is chosen before time t by the estimator policy.

Theorem 4. Let RM(A) be as defined above. Then RM(A)< 2
√

M 1−β M+1

1−β
∥X− X̂∥F

We only prove this for the case of zero noise, however a bound on the noise extends to
proving the full claim.

Proof. Assume that σ2 = 0 so that rt,Zt = XZt β
Tt,Zt and rt,At = XAt β

St,At . Let X̂At denote the
value of the At entry from our estimator. With σ2 = 0 we can rewrite RM(A) as

RM(A) = sup
Z1,...,ZM

M

∑
t=1

rt,Zt − rt,At ,

or equivalently,

RM(A) = sup
Z1,...,ZM

M

∑
t=1

XZt β
Tt,Zt −XAt β

St,At .

Reordering terms, we have the identity:

(XZt β
Tt,Zt −XAt β

St,Zt)+(X̂At β
St,Zt −X̂Zt β

Tt,Zt)= (X̂At β
St,Zt −XAtβ

St,Zt)+(Xzt β
Tt,Zt −X̂Zt β

Tt,Zt).

Summing the left hand side over t = 1, ...,M gives you the sum of two regrets- the first is
the regret of using policy (At) when the true matrix is X , the second is the regret of using
policy (Zt) when the true matrix is X̂ . In particular, both sums on the left hand side are
positive. So, each sum is smaller than the sum on the right hand side. Thus we have

RM(A)≤
M

∑
t=1

(X̂At β
St,Zt −XAtβ

St,Zt)+(Xzt β
Tt,Zt − X̂Zt β

Tt,Zt)

≤
M

∑
t=1

β
St,At |X̂At −XAt |+β

Tt,Zt |XZt − X̂Zt |

< 2
1−β M+1

1−β
∥X− X̂∥1,

and since ∥X− X̂∥2
1
< M∥X− X̂∥2

F
we have

RM(A)< 2
√

M
1−β M+1

1−β
∥X− X̂∥F

	Contents
	1 Introduction
	1.1 Recommender systems
	1.2 Exploration-exploitation tradeoffs and bandit algorithms
	1.3 Matrix Completion
	1.3.1 Convex Optimisation Methods
	1.3.2 Matrix Completion with Bayesian Methods

	1.4 Variational Inference
	1.4.1 Introduction
	1.4.2 Big Data and Variance Reduction Methods

	1.5 Langevin Method

	2 Approximate Thompson sampling for sequential matrix completion
	2.0.1 Stochastic Variational Inference Method
	2.0.2 Stochastic Gradient Langevin Dynamics Method
	2.0.3 Singular Value Thresholding Method

	3 Results
	3.1 Posterior Estimation Tests
	3.2 Bandit Results with Synthetic Data
	3.3 Bandit Results with MovieLens Data

	4 Conclusion
	4.1 Discussion of Results
	4.2 A new proposal

	Bibliography
	Appendix A Proof of the analytical expression for the optimal ELBO update
	A.1 The KL Divergence is nonnegative
	A.2 The Mean Field Method Update Equation

	Appendix B Frobenius Normed-Error of Estimator Bounds Regret

